

1. How to enable broadband? (for Telco's)

By visionairs à Disruptive

- Fiber to the Home
 - 100 1000 Mb/s is needed anywhere
 - predicted during the last 25 years

In practice à Gradual grow + different options

- Narrow band (<33kb/s):
 - voice band modems
- 1GBB (33k-1Mb/s):
 - ISDN (NL:1988?)
 - first ADSL subscriptions (NL:1998)
 - first cable modems
- 2GBB (1-10 Mb/s), Commodity in NL (2009 ≈80% home connections)
 - ADSL2/ADSL2p, HDSL (1995), SDSL(2000) NL: (2010 ≈ 50%)
 - Cable modems (DOCSIS 2.0) NL: (2009 ≈ 30%)
 - some fiber to the home (<3%)
- 3GBB (10-100MB/s)
 - VDSL1(1998/2001), VDSL2(2006) fiber to the cabinet
 - Cable modems (DOCSIS 3.0)
 - more fiber to the home (subscribed, not passed-only or connected-only)
- 4GBB (100M-1Gb/s):
 - many cable links ("cable operators")
 - many FttH links ("Telcos") **B** this presentation

1. How to enable broadband? (for Telco's)

2. Hybrid FttH - complementary to full FttH

FttH is not only fiber beyond the front door

(hybrid fiber/copper is also possible: Fiber <u>up</u>to or <u>in</u>to the Home)

Why: hybrid has possible techno-economic advantages

- may save costs for digging/installation when copper can be reused
- may save installation time, so faster roll-out

Where: possible scenarios

- apartment buildings, multi-tenant houses, city centers
- FttH: 80% beyond the front door? full fiber
- FttH: 20% up to the basement or curb (footway boxes)? hybrid fiber
- 20% covers a lot of connections!

2. Hybrid FttH - complementary to full FttH

- **How:** hybrid = reusing existing wiring (only when attractive)
 - bridging the last 20-200m
 - single wire-pair or (when possible) to bonded wire pairs (double rate)
 - up to 1 Gb/s, using a new (ultimate) DSL technology
- **How**: hybrid = distribution points:
 - fiber to multiple copper, and reverse
 - Footway boxes, basement boxes, house front boxes, ...
 - Power feeding from meter closets

CAT-5 CABLE

- Today: 1 Gb/s Ethernet via copper (1000 BASE-T)
 - 1 Gb-ethernet is a consumer product (via 4 twisted pairs)
 - 10 Gb-ethernet exists as well (via high quality cabling)
- In progress: more tranceivers up to 1 Gb/s
 - G.hn (home networking tranceivers) up to 1 Gb/s
 - several >>100Mb/s experiments reported by industry
 - 4GBB/CELTIC consortium studies feasibility of the concept
- Topology opportunities
 - the last copper drop can be very short
 - bonding quads is an opportunity in some countries

A typical Dutch city

Bold markers denote 80-100% has a double wire pair

>70% in this city (example)

A typical Dutch city

Bold markers denote 80-100% has a double wire pair

>95% in selected areas

Many questions to be solved

Is it technically feasible via **multi-wire** telephony cabling?

- Cable measurements up to 500MHz
- Noise measurements (impulses, RFI) in operational networks
- modeling, simulation, bitrate predictions
- new transmission technologies (bitrate, MIMO, remotely powered, ..)

Is it economically attractive?

- Geographic statistics of network topologies
- when using "hybrid fiber/copper", when "full fiber"

Will it be available in time?

- should initiate a standard.
- communication toward standardization bodies Via BBF -> ITU

à European consortium: "Enabling 4GGB", (2009-2011)

Members of 4GBB/CELTIC Consortium (2009-2011)

Measurement setup

Key problem:

Instrument does not measure what I would like to know!

Measurement setup

schematic diagram

Measurement setup

use known networks to measure the errors, and to correct for it via software post-processing ...

solve 140 equations to find 48 unknown (for each frequency)

Measurement setup

calibration set, for error correction

Measurement setup

calibration set, for error correction

- CAT5-quality
- 4 twisted-pairs
- shielded
- intended for Gb Ethernet networks

232m, CAT5, 4 twisted-pairs

61m, CAT5, 4 twisted-pairs

Balanced Transmission:

5.7 dB / 100m @ 10MHz 18.6 dB / 100m @ 100MHz

1M

10k

100k

10M

100M

Balanced EL-FEXT Crosstalk: much better then "excellent"

Theoretical bitrates:

use of VDSL2, 30 MHz spectra: use of 2 bonded pairs ("quads") use of classic simulation models

- 50m à >500 Mb/s
- 200m à >460 Mb/s
 more with dedicated DSL / G.hn

1G

10k

100k

10M

100M

1M

- 30 twisted-quads (2×2 pair)
- shielded
- telephony wiring for buildings

interconnection with measurement setup

525m on a drum

Balanced Transmission:

3.5 dB / 100m @ 10MHz 13 dB / 100m @ 100MHz

Balanced EL-FEXT Crosstalk: "excellent" quality

Theoretical bitrates:

use of VDSL2, 30 MHz spectra: use of 2 bonded pairs ("quads") use of classic simulation models

- 50m à >350 Mb/s
- 200m à >280 Mb/s more with dedicated DSL / G.hn

4. Characterizing low quality cables (very cheap)

- fully untwisted
- fully undefined "telephony wiring"
- unshielded
- found in consumer shop "GAMMA"
- 25m

25m or 25+25m spread-out on the floor

Balanced Transmission:

7 dB / 100m @ 10MHz 40 dB / 100m @ 100MHz

Replica's from common practice

- straight untwisted pair
- straight twisted pair
- interconnection ("home brew")
- simulation of a cable splice

freq:[MHz]

450

5. Further actions, for the next two years

- Techno-economic studies
 - when and where is it attractive?
 - quantifying cost-savings
- Further characterization of access network
 - operational cables/installation
 - noise, ingress, egress, etc
 - modeling, prediction of bitrates
- Development of dedicated DSL technologies
 - by other partners in 4GBB/Celtic consortium
- Bring the industry in motion
 - gain more interest from industry & operators
 - initiation of standards Via BBF -> ITU
 - publicity: DSL seminar (Delft), white papers via BBF, ...

6. Conclusions

enabling 4GBB via hybrid FttH:

- Hybrid FttH is an attractive extension to full FttH
 - might be more effective in cost for several cases (20%?, 30%?, ...)
 - might be faster to install for several cases
 - might lower the threshold for offering 4GBB speeds
- Hybrid FttH is technically feasible
 - the first cable measurements made this plausible
 - its essentially a mix of Gb/s Ethernet and DSL solutions
- Hybrid FttH is applicable today for 3GBB+
 - 30MHz variants of VDSL2 already standardized
 - G.hn is also a possibility
 - many customer premises connected via quads for 2 bonded pairs
 - targeted for existing wiring in apartment buildings

lets standardize the missing DSL technology for 4GBB!

Balanced NEXT Crosstalk:

typical telephony quality

Balanced NEXT Crosstalk:

better then "excellent"

Balanced NEXT Crosstalk:

"bad" quality

