
CEN/CLC/JTC 22/WG 3 N 29

CEN/CLC/JTC 22/WG 3 "Quantum Computing and Simulation"
WG Secretariat: AFNOR
Convenor: Lefebvre Catherine Mrs

Contribution_RB_and_MA_LayerModel_HardwareAbstractionLayer

Document type Related content Document date Expected action
Meeting / Document
for discussion

Meeting: VIRTUAL 28 Sep 2023 2023-09-22

https://sd.cen.eu/documents/open/e61a9d01-35a6-4cbe-bb16-59dba8d38991
http://sd.cen.eu/meetings/131599

CEN/CLC/JTC 22/WG 3

Contribution on Layer Model Draft 01 from Rob F.M. van den
Brink and Michele Amoretti

Functional description of Layer 7;
Hardware abstraction layer

Date of submission: 2023-09-21

Submitted by: Rob F.M. van den Brink (Rob.vandenBrink@Delft-Circuits.com)
Michele Amoretti (michele.amoretti@unipr.it)

Expected action: Vote
Expected date: 2023-09-28 (JTC22/WG3)
WG3-Project: Layer Model

1. Abstract
Contribution N19 (to JTC22/WG3) has proposed a first draft of a TR “Layer model for
quantum computing” with functional descriptions of each layer. Layer 7 is dedicated to
the “hardware abstraction layer”.
This contribution proposes a functional description of that layer, for inclusion in the draft
of the aimed Technical Report (TR).

2. Proposal
The layer model that has been described in the FGQT Roadmap Document has several
layers in a stack, and the low-level layers are subdivided into multiple hardware stacks.
One of these layers is the “Hardware abstraction layer”, or simply HAL, to abstract away
the quantum computer implementation details while keeping the performance. A
functional description of that layer is being proposed here. The intro is taken from the
originating FGQT Roadmap Document and extended with further details.

1/5

mailto:michele.amoretti@unipr.it
mailto:Rob.vandenBrink@Delft-Circuits.com

CEN/CLC/JTC 22/WG 3

Start of literal text proposal

X. Layer 7: Hardware abstraction layer
The aim of the Hardware Abstraction Layer is to inform higher layers with capabilities
and limitations supported by the underlying hardware. Layers above the HAL can use this
information to hide many implementation-specific details to higher layers by offering a
more unified interface.
Not all quantum computers make use of the same paradigm. Annealing quantum
computers behave differently from gate-based quantum computers, and therefore their
HALs might be different as well.
The HAL can therefore provide information about the underlying architecture, such as for
instance being “gate-based” or “annealing”.

X.1 HAL for gate-based quantum computers
A gate-based quantum computer processes a sequence of instructions to change the
state of a quantum register with many qubits before the resulting state is queried by
measurements. A convenient graphic representation of such a sequence has the
appearance of a circuit where the elements seem to operate on one or more qubits
simultaneously. Due to this convenient graphic representation, these instructions are
called gates.

X.1.1. Organization of qubits
Quantum register: A quantum register is a system comprising multiple qubits. The HAL
supports instructions to operate on such a register, for initializing, changing and querying
its state.

Width: The HAL can specify the number of available qubits and how they are organized in
these registers. It can also specify if all qubits are part of a single quantum register or if
are they are allocated to multiple (smaller) registers. The use of multiple registers may
occur when using modular hardware architectures.

Depth: The HAL can specify the maximum depth for circuits of gates that can be
executed before the calculated result becomes unreliable. This value is related to
coherence time of the implementation and other imperfections of underlying hardware.

Connections: The HAL can also provide an "adjacency matrix" for each quantum register,
to indicate which qubits are edge-connected. For instance, when a register has N qubits,
then this adjacency matrix C has size NxN. The default of each element in this matrix is
"false", but if qx and qy are the indices of two adjacent qubits then
C(qx,qy)=C(qy,qx)="true". Matrix C is therefore a symmetric matrix, since C(k,r)=C(r,k).

The HAL can provide additional information about the underlying architecture.

X.1.2. The concept of native gates
The HAL can specify a list of "native gates" supported by the underlying hardware. The
name "native gate" refers to an operation for changing the quantum state of a register

2/5

CEN/CLC/JTC 22/WG 3

by means of a "single" physical action on one or more qubits simultaneously. An example
is a single pulse composition that cannot be broken down into two or more shorter pulse
compositions. In other words, if a gate can be divided into two or more shorter
independent sequential physical actions, it is not native.

As a result, a native gate can be executed in the minimum amount of execution time.
Knowledge about which gates are native is relevant information for compilers that try to
optimize a circuit with respect to execution time.
Gates that can only be implemented by a sequence of two or more native gates are
called "compound" gates.

The boxed example below illustrates for a specific case that the single qubit gates X, Y,
Rx(a), Ry(b) are all native for that implementation, while the gates Z and Rz(c) are
compound gates. A similar example can be elaborated with dual qubit gates. For a
specific implementation, a gate like CNOT may turn out to be compound as well when it
cannot be implemented with one native dual qubit gate.

Example

The concept of native gates can be explained by the following example. Assume
that a specific hardware implementation supports a mechanism to rotate a qubit
via a "single" pulse composition that can be controlled with two real parameters
"a" and "b". Assume that the definition of this rotation function equals:

 RN(a,b) = [cos(a/2), -j*exp(-j*b)*sin(a/2)]
 [-j*exp(j*b)*sin(a/2), cos(a/2)]

Then some of the well known gates can be implemented via:

 Rx(a) = [cos(a/2), -j*sin(a/2)] = RN(a,0)
 [-j*sin(a/2), cos(a/2)]

 Ry(b) = [cos(b/2), -sin(b/2)] = RN(a,pi/2)
 [sin(b/2), cos(b/2)]

 Rz(c) = [exp(-j*c/2), 0] = RN(pi,0) * RN(pi,-c/2) * exp(j*pi)
 [0, exp(j*c/2)]

 X = [0, 1] = Rx(pi) * exp(j*pi/2) = RN(pi,0) * exp(j*pi/2)
 [1, 0]

 Y = [0, -j] = Ry(pi) * exp(j*pi/2) = RN(pi,pi/2) * exp(j*pi/2)
 [+j, 0]

 Z = [1, 0] = Rz(pi) * exp(j*pi/2) = RN(pi,pi) * RN(pi,pi/2) * exp(-j*pi/2)
 [0, -1]

In this hardware implementation, Rx(a), Ry(b), X, Y can be considered as native
gates. The gates Rz(c) and Z are to be combined from two sequential native
gates, so they are compound. Knowledge about which gates are native is
relevant for quantum algorithms that try to find an optimal circuit representation
in terms of execution time.

3/5

CEN/CLC/JTC 22/WG 3

X.1.3 Concept of primitive gates
A compiler or interpreter does not always know how to convert well-known gates into a
smart combination of native gates for any possible set of native gates. In those cases, a
fall-back situation should be supported by the HAL in terms of predefined solutions for
well-known gates like Rx(a), Ry(b), Rz(c), X, Y, Z, H, S, T, CNOT, etc.
Therefore, the HAL can specify a list of "primitive gates" that it can emulate by a
sequence of one or more native gates.

X.1.4 Concept of measurement
The HAL supports instructions to query the state of one or more qubits in a quantum
register by means of a measurement. The answer will be returned as a binary string
stored in a dedicated register. Note that the state will be collapsed after such a query.
The HAL also supports instructions to read out the bits in this register and/or to use these
bits for instructing controlled gates.
If the hardware supports it, the HAL can also offer instructions to specify the basis for
these measurements.

X.1.5 Interfacing considerations
A preferred way of communicating with the HAL is by means of binary instructions,
preferably common for all quantum computing implementations. Therefore, it requires a
list of binary commands for letting the HAL report capabilities and limitations of the
underlying hardware, and for executing all aforementioned instructions.
Such an interface may also offer a convenient format for instructing a simulator that
emulates a quantum computer with a limited set of qubits.

X.2 HAL for annealing quantum computers
EDITORIAL NOTE: Contributions are invited for adequate text that should fit here.

End of literal text proposal

3. Left for further study
Contributions on topics that should be added to the above literal text are invited. Topics
for consideration are:

 HALs for annealing/adiabatic quantum computers?
 Is there a better wording for defining the concept of “native gate” ?
 Do quantum simulators need a more dedicated HAL or is the generic gate-based

HAL description adequate for them as well?
 Is a quantum repeater a device that should be covered by this layer model for

quantum computers or should it be kept out of the present layer model document
since it is another type of device that deserves a document on its own?

 What additional information should a HAL provide about the underlying
architecture?

When needed the above proposed text can be extended with relevant explanations and
references to associated documents.

4/5

CEN/CLC/JTC 22/WG 3

4. Suggestions for further reading
 https://arxiv.org/abs/2201.08825

 https://arxiv.org/abs/2305.06687

 https://www.ibm.com/quantum/roadmap

 https://riverlane.github.io/QHAL_internal/dev/index.html

 https://www.gsma.com/aboutus/workinggroups/resources/ig-14-quantum-
hardware-abstraction-layer-for-quantum-computing-and-networking

5/5

https://www.gsma.com/aboutus/workinggroups/resources/ig-14-quantum-hardware-abstraction-layer-for-quantum-computing-and-networking
https://www.gsma.com/aboutus/workinggroups/resources/ig-14-quantum-hardware-abstraction-layer-for-quantum-computing-and-networking
https://riverlane.github.io/QHAL_internal/dev/index.html
https://www.ibm.com/quantum/roadmap
https://arxiv.org/abs/2305.06687
https://arxiv.org/abs/2201.08825

