
CEN/CLC/JTC 22/WG 3 N 31

CEN/CLC/JTC 22/WG 3 "Quantum Computing and Simulation"
WG Secretariat: AFNOR
Convenor: Lefebvre Catherine Mrs

LayerModel_Draft02

Document type Related content Document date Expected action
Meeting / Document
for discussion

Meeting: VIRTUAL 26 Oct 2023 2023-09-29
COMMENT/REPLY by
2023-10-20

https://sd.cen.eu/documents/open/e61a9d01-35a6-4cbe-bb16-59dba8d38991
http://sd.cen.eu/meetings/131704

CEN/TC XXX

Date: 20YY-XX

prEN XXXXX:20YY

Secretariat: XXX

JTC 22 WG3 Quantum Computing

 Layer Model

Draft 02, 2023-09-28

CCMC will prepare and attach the official title page.

prEN XXXX:20YY(E)

Contents Page

European foreword.. 4

Introduction.. 5

1 Scope... 6

2 Normative references.. 6

3 Terms and definitions.. 6

4 Overview.. 8
4.1 Subclause title.. 9
4.2 Subclause title.. 9

5 Low level Hardware layers.. 10
5.1 Cryogenic Solid State... 10
5.2 Room Temperature Solid State... 11
5.3 Trapped Ions.. 11
5.4 Neutral Atoms.. 12
5.5 Photonics... 12
5.6 Other….. 13

6 Software Drivers... 13

7 Hardware abstraction Layer (HAL)... 13
7.1 HAL for gate-based quantum computers... 14
7.2 HAL for annealing quantum computers... 16
7.3 HAL for simulation of quantum physics models.. 16

8 Communication Layer... 17

9 Register level representation layer.. 19

10 Programming layer.. 19

11 Applications / Services supporting use cases.. 19

Annex A (informative)111 Title of Annex A, e.g. Example of a table, a figure and a formula.........20

A.1 Clause title... 20

A.1.1.1 Subclause title.. 20

A.1.1.1.1 Subclause title... 20

A.1.1.1.1.1 Subclause title... 20

A.2 Example of a table... 20

Table A.1 — Table title.. 20

A.3 Example of a figure... 20

A.4 Examples of formulae.. 21

Annex ZA (informative) Relationship between this European Standard and the
[essential]/[interoperability]/[…] requirements of
[Directive]/[Regulation]/[Decision]/[…][Reference numbers of the legal act] aimed to be
covered... 22

2

prEN XXXX:20YY (E)

Table ZA.1 — Correspondence between this European Standard and [Annex … of] / [Article(s) …
of] [Directive] / [Regulation] / [Decision] [Reference numbers of the legal Act]]................22

Bibliography... 23

[NOTE to the drafter: To update the Table of Contents please select it and press "F9". To recreate the Table of
Contents, select Custom Table of Contents – Options and choose the appropriate headings/titles to display. For
further instructions, see the CEN Simple Template Quick Start Guide.]

3

prEN XXXX:20YY(E)

European foreword

This document (prEN XXXX:20YY) has been prepared by Technical Committee CEN/TC XXX “Title”, the
secretariat of which is held by XXX.

This document is currently submitted to the CEN Enquiry/Formal Vote/Vote on TS/Vote on TR.

This document will supersede EN XXXX:YYYY.

EN XXXX:YYYY includes the following significant technical changes with respect to EN XXXX:YYYY:

This document has been prepared under a Standardization Request given to CEN by the European
Commission and the European Free Trade Association, and supports essential requirements of
EU Directive(s) / Regulation(s).

For relationship with EU Directive(s) / Regulation(s), see informative Annex ZA, ZB, ZC or ZD, which is an
integral part of this document.

[NOTE to the drafter: Add information about related documents or other parts in a series as necessary. A list
of all parts in a series can be found on the CEN website: www.cencenelec.eu.]

4

prEN XXXX:20YY (E)

Introduction

A layer model is an abstract description of a (computing) system via a common stack of layers. The layer
model for quantum computing slices down the overall complexity of quantum computing into two main layer
models of addressing the whole system. The lower of the two main layer models addresses mainly hardware,
and it is dependent of the physical platform. The upper main layer model addresses mostly software, and it
aims to be hardware agnostic. This is not fully possible in practice, but more general is: the higher up in the
stack the more hardware-agnostic the layers will be.

By agnostic we mean that the same system works for different quantum computing hardware platforms such
as: solid state quantum computing, ion traps, neutral atoms, optical quantum computing and topological
quantum computing. Each of these two main layer models comprises many inner layers.

The first purpose of this document is to define a common language that will be used to describe the features
and functional requirements for each layer of the stack of a quantum computer. Another purpose is to analyse
and describe the interaction between the layers by means of well-defined interfaces. These are essential steps
towards interworking between modules from different origins. The functional description of each layer
should offer sufficient guidance on where a desired functionality should be described, and what kind of
exchange is needed with other modules through the interfaces. The boundaries between the layers are
natural locations for such interfaces. Correctly defining such boundaries requires careful analysis of the
interaction between the layers.

[NOTE to the drafter: If patent rights have been identified during the preparation of the document, the
following text shall be included:

“The European Committee for Standardization (CEN) draws attention to the fact that it is claimed that
compliance with this document may involve the use of a patent concerning (…subject matter…) given in (…
subclause…) and which is claimed to be relevant for the following clause(s) of this document:

 Clause(s)…

CEN takes no position concerning the evidence, validity and scope of this patent right. The holder of this
patent right has assured CEN that they are willing to negotiate licences under reasonable and non-
discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of
the holder of this patent right is registered with CEN. Information may be obtained from:

Name of holder of patent right …

Address ...

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights other than those identified above. CEN shall not be held responsible for identifying any or all such
patent rights.”]

5

prEN XXXX:20YY(E)

1 Scope

This document describes a layer model that covers the entire stack of a quantum computer. The group of
lower-level (hardware) layers are organized in different hardware stacks tailored to different hardware
architectures, while the group of higher-level (software) layers are built on top of these and expected to be
common for all quantum computing systems. The higher-up in the stack, the more agnostic it will be from
underlying layers. Reducing the dependencies between higher and lower layers is a crucial point for
optimised quantum computations.

This document is limited to a high-level (functional) description of the layers involved. Additional details of
the individual layers will be described in other, future, CEN/TRs.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.

[NOTE to the drafter: The Normative references clause is compulsory. If there are no normative references,
add the following text below the clause title: "There are no normative references in this document."]

EN XXXX, Title of document

EN XXXX-1:20YY, General title of series — Part X: Title of part

EN XXXXX (all parts), General title of series

[NOTE to the drafter: If a dated reference is impacted by a standalone amendment or corrigendum, list the
main standard and include a footnote as follows:

EN XXXX:20YY1, General title]

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply / the terms and definitions given
in… and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp/

— IEC Electropedia: available at https://www.electropedia.org/

[NOTE to the drafter: The Terms and definitions clause is compulsory. If there are no terms and definitions,
add the following text: "No terms and definitions are listed in this document."]

3.1
term
text of the definition

1 As impacted by EN XXXX:20YY/A1:20YY.

6

https://www.electropedia.org/
https://www.iso.org/obp/ui

prEN XXXX:20YY (E)

3.2
term
admitted term
text of the definition

Note 1 to entry:

[SOURCE: EN XXXX:20YY, definition XX]

[NOTE to the drafter: If applicable, a list of ‘Symbols and abbreviated terms’ can be included as a subclause
under Clause 3 or added as a separate Clause 4.]

7

prEN XXXX:20YY(E)

4 Overview

Quantum computing is an area covering many different implementations. A convenient way of specifying its
requirements is via a stack of layers, as shown in Figure 4.1. This layer approach is inspired on the OSI model
that computer systems use to communicate over a network. The layers are chosen in such a manner that the
functionality of each layer can be described in an independent manner. This causes that the interworking
between these layers can be described through well-defined interfaces at the boundaries of these layers. Note
that such an interface can be virtual (hidden internally within the implementation of the same origin) or real
(between implementations of different origin).

The stack covers both hardware and software layers, while some layers are a mix of both. The software layers
are drawn in Figure 4.1 above the hardware layers with another colour. Each layer aims to be more agnostic
to the exact implementation of lower layers. The functional description of these layers are described in
further detail in succeeding chapters.

Figure 4.1 - Overview of the layer model of quantum computing.
It supports multiple hardware implementations in the hardware layers

The layered approach allows for using different hardware stacks for specifying the requirements of different
architecture families. Each architecture family can have multiple members (A, B, C, ...) and the description of
its hardware layers (1,2,3,4) may account for differences between these members. The diagram in Figure 4.1
has illustrated this symbolically by drawing different “boxes” in the layers for different members of the same
family.

8

prEN XXXX:20YY (E)

So far, the following quantum architecture families have been identified (in arbitrary order):
 Cryogenic solid-state based;
 Room temperature solid-state based;
 Trapped ions;
 Neutral atoms;
 Photonic quantum computing;
 Other architectures that may be identified in the future

These architectures are described in further detail in succeeding chapters.

A module is an implementation that may be constructed from (smaller) modules and components. It could
offer the functionality of a single layer, of multiple layers, or just of a fragment of a layer. A module may also
support different operating modes, such that it complies with the requirements of multiple members and/or
multiple architecture families. As such, the functionality of a module may cover multiple layers and/or
families and/or members.

4.1Subclause title

4.2Subclause title

4.2.1 Subclause title

4.2.1.1 Subclause title

4.2.1.1.1 Subclause title

4.2.1.1.1.1 Subclause title

Text of subclause.

9

prEN XXXX:20YY(E)

5 Low level Hardware layers

5.1Cryogenic Solid State

The members of this architecture family have in common that they all make use of a cryostat, where the
quantum devices in a holder are controlled from outside the fridge by room-temperature electronics.
Consequently, a huge amount of control channels is required to interconnect those two, especially when many
qubits are to be controlled in a single fridge.

The following members have been identified within this architecture family:
 Transmons;
 Flux qubits;
 Semiconductor spin qubits;
 Topological qubits;
 Artificial atoms in solids.

Four hardware layers have been identified for this architecture family.

5.1.1 Layer 1 – Quantum Devices

The quantum devices in hardware layer 1 are modules with qubits that are typically operating at cryogenic
temperatures and may be implemented as chip and/or on PCB. They may have though requirements on
shielding, operating temperature, magnetic aspects, etc.

5.1.2 Layer 2 – Control Highway

Hardware layer 2 covers all infrastructure needed for transporting microwave, light wave, RF and DC signals
(via electrical and/or optical means) between the control electronics at room temperature and the quantum
devices at cryogenic temperatures. It is usually a mix of transmission lines, filtering, attenuation,
amplification, (de)multiplexing, as well as means for proper thermalization. A huge number of control
channels are required to control many qubits in a single fridge (which clarifies the name) and this can easily
become very bulky. It could have tough requirements on aspects like heat-flow, thermal noise and vacuum
properties.

5.1.3 Layer 3 – Control Electronics

Hardware layer 3 covers all electronics for generating, receiving, and processing microwave, RF and DC
signals. Some implementations make use of routing/switching and/or multiplexing of control signals at room
temperatures. It may have some firmware on board to guide the signal generation and signal processing.

5.1.4 Layer 4 – Control Software

Hardware layer 4 covers a mix of hardware and low-level driver software for instructing the control
electronics and means for performing calibration. It has a software interface to higher layers for receiving
sequences of instructions about when, where and what pulses are to be generated, and how to process and
read-out the response.

10

prEN XXXX:20YY (E)

Placed on top of quantum hardware, control software delivers high-performing qubit operations to higher
level of abstraction in the quantum stack with minimal user intervention. It may include calibration means,
low-level code to translate instructions from higher software layers into commands for guiding the control
electronics/optics, and comprises the techniques used to define error-robust physical operations and
associated supporting protocols designed to tune-up and stabilize the hardware.

Control software for quantum hardware is typically stored on digital computers, i.e., there is a very strict
separation between the place where the control software is stored and the quantum registers. In the long
term, control software may work in concert with Quantum Error Correction (QEC) imposed ny higher
software layers, to provide more resilience on various error types. More specifically, control software could
improve the efficiency of QEC, i.e., reduce resource overheads required for encoding, by homogenizing error
rates and reducing error correlations.

5.2Room Temperature Solid State

The members of this architecture family have in common that solid-state qubits are all operating at room
temperatures. Examples of members in this architecture family are:

— Artificial atoms in solids, such as NV centres;
— Optical quantum dots.

5.2.1 Layer 1 – Quantum Devices

5.2.2 Layer 2 – ...

5.2.3 Layer 3 – ...

5.2.4 Layer 4 – …

5.3Trapped Ions

The members of this architecture family can operate either at room temperature or at cryogenic
temperatures (e.g. 4K). Quantum devices are controlled by electronics operating either at room temperature
or under cryogenic conditions. For a larger number of qubits, the required amount of routing signals becomes
bulky, and efficient thermal management, low-noise electrical and magnetic components are required.

Room temperature architectures that are identified are
— Optical qubits;
— Raman qubits;
— Spin (microwave) qubits;

Cryogenic (4K) architectures that are identified are
— Optical qubits;
— Raman qubits;
— Spin (microwave) qubits

11

prEN XXXX:20YY(E)

5.3.1 Layer 1 – Quantum Devices

5.3.2 Layer 2 – ...

5.3.3 Layer 3 – ...

5.3.4 Layer 4 – …

5.4Neutral Atoms

Systems of individually-controlled neutral atoms, interacting with each other when excited to Rydberg states,
have emerged as a possible platform for quantum information processing. The two main examples are
ensembles of individual atoms trapped in optical lattices or in arrays of microscopic dipole traps separated by
a few micrometres. In these platforms, the atoms are almost fully controllable by optical addressing
techniques.

5.4.1 Layer 1 – Quantum Devices

5.4.2 Layer 2 – ...

5.4.3 Layer 3 – ...

5.4.4 Layer 4 – …

5.5Photonics

These architectures have in common that the quantum information during computing is encoded into
photonic properties. We can divide different families of photonic quantum computers in two categories,
universal and non-universal quantum computers. Non-universal quantum computers cannot perform every
task but can at least perform one task.

Non-universal photonic quantum computing families that are identified are:
— Boson sampling;
— Gaussian boson sampling.

Universal families that are identified are:
— Knill-Laflamme-Milburn scheme (This was a theoretical proof-of-principle, but not practically
feasible);
— Measurement based quantum computing using cluster states;
— Continuous variable quantum computing.

5.5.1 Layer 1 – Quantum Devices

5.5.2 Layer 2 – ...

5.5.3 Layer 3 – ...

5.5.4 Layer 4 – …

12

prEN XXXX:20YY (E)

5.6Other…

Other architectures may be identified in future, and will then be added to this list.

6 Software Drivers

In the layered view illustrated in Figure 12, software drivers are components that are plugged into the
operating system and allow hardware-abstraction programs to call the control software of the underlying
quantum hardware. If the hardware changes, the software drivers must change as well.

13

prEN XXXX:20YY(E)

7 Hardware abstraction Layer (HAL)

The aim of the Hardware Abstraction Layer is to inform higher layers with capabilities and limitations
supported by the underlying hardware. Layers above the HAL can use this information to hide many
implementation-specific details to higher layers by offering a more unified interface.

Not all quantum computers make use of the same paradigm. Annealing quantum computers behave
differently from gate-based quantum computers, and therefore their HALs might be different as well.

The HAL can therefore provide information about the underlying architecture, such as for instance being
“gate-based”, “annealing” or “simulation”.

7.1HAL for gate-based quantum computers

A gate-based quantum computer processes a sequence of instructions to change the state of a quantum
register with many qubits before the resulting state is queried by measurements. A convenient graphic
representation of such a sequence has the appearance of a circuit where the elements seem to operate on one
or more qubits simultaneously. Due to this convenient graphic representation, these instructions are called
gates.

7.1.1 Organization of qubits

Quantum register: A quantum register is a system comprising multiple qubits. The HAL supports instructions
to operate on such a register, for initializing, changing, and querying its state.

Width: The HAL can specify the number of available qubits and how they are organized in these registers. It
can also specify if all qubits are part of a single quantum register or if are they are allocated to multiple
(smaller) registers. The use of multiple registers may occur when using modular hardware architectures.

Depth: The HAL can specify the maximum depth for circuits of gates that can be executed before the calculated
result becomes unreliable. This value is related to coherence time of the implementation and other
imperfections of underlying hardware.

Connections: The HAL can also provide an "adjacency matrix" for each quantum register, to indicate which
qubits are edge-connected. For instance, when a register has N qubits, then this adjacency matrix C has size
NxN. The default of each element in this matrix is false, but if qx and qy are the indices of two adjacent qubits
then C(qx,qy)=C(qy,qx)=true. Matrix C is therefore a symmetric matrix, since C(k,r)=C(r,k).

The HAL can provide additional information about the underlying architecture.

7.1.2 The concept of native gates

The HAL can specify a list of "native gates" supported by the underlying hardware. The name "native gate"
refers to an operation for changing the quantum state of a register by means of a "single" physical action on
one or more qubits simultaneously. An example is a single pulse composition that cannot be broken down into
two or more shorter pulse compositions. In other words, if a gate can be divided into two or more shorter
independent sequential physical actions, it is not native.

As a result, a native gate can be executed in the minimum amount of execution time. Knowledge about which
gates are native is relevant information for compilers that try to optimize a circuit with respect to execution
time.

14

prEN XXXX:20YY (E)

Gates that can only be implemented by a sequence of two or more native gates are called "compound" gates.

The boxed example in figure 7.1 illustrates for a specific case that the single qubit gates X, Y, Rx(a), Ry(b) are
all native for that implementation, while the gates Z and Rz(c) are compound gates. A similar example can be
elaborated with dual qubit gates. For a specific implementation, a gate like CNOT may turn out to be
compound as well when it cannot be implemented with one native dual qubit gate.

Example

The concept of native gates can be explained by the following example. Assume that a specific
hardware implementation supports a mechanism to rotate a qubit via a "single" pulse
composition that can be controlled with two real parameters "a" and "b". Assume that the
definition of this rotation function equals:

 RN(a,b) = [cos(a/2), -j*exp(-j*b)*sin(a/2)]

 [-j*exp(j*b)*sin(a/2), cos(a/2)]

Then some of the well known gates can be implemented via:

 Rx(a) = [cos(a/2), -j*sin(a/2)] = RN(a,0)

 [-j*sin(a/2), cos(a/2)]

 Ry(b) = [cos(b/2), -sin(b/2)] = RN(a,pi/2)

 [sin(b/2), cos(b/2)]

 Rz(c) = [exp(-j*c/2), 0] = RN(pi,0) * RN(pi,-c/2) * exp(j*pi)

 [0, exp(j*c/2)]

 X = [0, 1] = Rx(pi) * exp(j*pi/2) = RN(pi,0) * exp(j*pi/2)

 [1, 0]

 Y = [0, -j] = Ry(pi) * exp(j*pi/2) = RN(pi,pi/2) * exp(j*pi/2)

 [+j, 0]

 Z = [1, 0] = Rz(pi) * exp(j*pi/2) = RN(pi,pi) * RN(pi,pi/2) * exp(-j*pi/2)

 [0, -1]

In this hardware implementation, Rx(a), Ry(b), X, Y can be considered as native gates. The gates
Rz(c) and Z are to be combined from two sequential native gates, so they are compound.
Knowledge about which gates are native is relevant for quantum algorithms that try to find an
optimal circuit representation in terms of execution time.

Figure 7.1 - Example of a specific hardware implementation,
where Rx, Ry, X, Y are native gates and Rz, Z are compound gates

7.1.3 Concept of primitive gates

A compiler or interpreter does not always know how to convert well-known gates into a smart combination of
native gates for any possible set of native gates. In those cases, a fall-back situation should be supported by
the HAL in terms of predefined solutions for well-known gates like Rx(a), Ry(b), Rz(c), X, Y, Z, H, S, T, CNOT,
etc.

15

prEN XXXX:20YY(E)

Therefore, the HAL can specify a list of "primitive gates" that it can emulate by a sequence of one or more
native gates.

7.1.4 Concept of measurement

The HAL supports instructions to query the state of one or more qubits in a quantum register by means of a
measurement. The answer will be returned as a binary string stored in a dedicated register. Note that the
state will be collapsed after such a query.

The HAL also supports instructions to read out the bits in this register and/or to use these bits for instructing
controlled gates.

If the hardware supports it, the HAL can also offer instructions to specify the basis for these measurements.

7.1.5 Interfacing considerations

A preferred way of communicating with the HAL is by means of binary instructions, preferably common for all
quantum computing implementations. Therefore, it requires a list of binary commands for letting the HAL
report capabilities and limitations of the underlying hardware, and for executing all aforementioned
instructions.

Such an interface may also offer a convenient format for instructing a simulator that emulates a quantum
computer with a limited set of qubits.

7.2HAL for annealing quantum computers

EDITORIAL NOTE: Contributions are invited for adequate text that should fit here.

7.3HAL for simulation of quantum physics models

EDITORIAL NOTE: Contributions are invited for adequate text that should fit here.

16

prEN XXXX:20YY (E)

8 Communication Layer

A quantum computer must be provided with a local operating system (OS), which is a resource manager for
the underlying quantum hardware, provided with built-in networking functions allowing multiple clients to
use the resources. Programs can make use of facilities only as offered by the OS. For example, the OS provides
communication primitives (for instance based on the POSIX standard for the sockets interface [ref12]) and
only by means of these primitives it should be possible to pass messages between programs.

The communication layer can handle these messages to send and receive instructions between client
applications outside the quantum stack and layers inside the quantum stack. This message exchange between
inside and outside the quantum stack can be internal as well as external. Internal refers to processes running
on the same OS, and external refers to processes running on a nearby computer or on a remote server
somewhere in the cloud. Exchange means both receiving and sending of messages.

The communication layer can handle all messages that are needed for starting a quantum computing session
(for instance handshaking, authentication, resource allocation, billing, rights-management, etc.). A quantum
computing session offers an application the experience as if it has its own resources and as if it is fully
protected from other applications.

Once a session is initiated, the communication layer can start handling incoming messages for instructing
layers higher up in the stack. For instance, to load and run a quantum assembly task. Results can be passed
back to the communication layer, which in turn can send messages with those results to the client application
outside the quantum stack (see Figure 8.1).

The communication layer can also communicate directly with lower layers in the quantum stack, if the user is
allowed to according to allocated usage rights. For instance, to send low-level commands directly to the
control electronics for firing a specific pulse to a qubit. And again, detected results from the control
electronics can also be passed back to the communication layer, which in turn can send messages with those
results to the client application outside the quantum stack.

Figure 8.1 illustrates the instruction flow through the layers in a graphic way. In this example the
communication layer receives a message to instruct the register-level representation layer to run a quantum
assembly task. When completed, the register-level representation layer informs the communication layer
about the result, which in turn sends a message to the sender of the initial message.

In other words:
 Step 1 is receiving a message from a client outside the stack.
 Step 2 is forwarding the request to for instance a register-level interpreter.
 Step 3 is an instruction sequence to the quantum devices.
 Step 4 is the register-level processing of the quantum computation result.
 Step 5 is forwarding the result back to the communication layer.
 Step 6 is sending the results back to the requesting client.

2 IEEE/Open Group 1003.1-2017, Standard for Information Technology - Portable Operating

System Interface (POSIX(TM)) Base Specifications, Issue 7.

17

prEN XXXX:20YY(E)

Figure 8.1 - Instruction flow through the layers within the quantum stack

Since the communication layer can handle messages to communicate with all layers in the quantum stack, it
may also be a convenient way to perform cross-layer communication within the quantum stack. It may not be
the preferred choice to let layers interwork directly with each other when they are not direct neighbours, but
sometimes it is an absolute necessity to skip a few layers for sending low-level commands directly from high-
level layers and vice versa. If this cannot be avoided, the use of messages from the communication layer may
offer a structured solution.

18

prEN XXXX:20YY (E)

9 Register level representation layer

This layer concerns quantum assembly languages (QASM) that describe quantum computations according to
one specific model (e.g., circuit model, measurement-based model, quantum annealing model), with a per-
architecture instruction set.

QASM is not a single assembly language and the syntax may also differ among various implementations.
Languages for gate-based quantum computing have in common that they can describe universal circuits with
single qubit gates, and entangled gates such as CNOT. Due to the huge diversity of quantum computing
architectures, it is not likely that a unique, widely accepted QASM would emerge and later become a standard.

10 Programming layer

The specification of quantum algorithms using QASM languages is not easy for programmers. Indeed, QASM
programs are usually generated by a software library, from a piece of code written in a common programming
language, such as Python.

In general, the programming layers include all the languages, libraries, and software development facilities
(e.g., software development kits, debugging tools, quantum compilers) used by developers for coding
quantum algorithms or high-level applications that use predefined quantum algorithms as subroutines.

Quantum compilation is the problem of translating an input quantum circuit into the most efficient equivalent
of itself, considering the characteristics of the device that will execute the computation and minimizing the
number of required two-qubit gates. The most advanced quantum compilers are noise-adaptive, i.e., they take
the noise statistics of the device into account.

11 Applications / Services supporting use cases

This layer contains the user-side where a problem exists that requires solving. Quantum computers can help
solving this problem and the user can then start programming algorithms to obtain the sought for answer.
Depending on the used service, users may perform tasks locally on a quantum computer. An alternative is that
tasks run mainly remotely on a classical computer and use a quantum cloud service to run specific tasks on a
dedicated quantum computer.

19

prEN XXXX:20YY(E)

Annex A
(informative)111

Title of Annex A, e.g. Example of a table, a figure and a formula

A.1 Clause title

A.1.1 Subclause title

A.1.1.1 Subclause title

A.1.1.1.1 Subclause title

A.1.1.1.1.1 Subclause title

Text of the annex.

A.2 Example of a table

Table A.1 — Table title

Table headera

Table text Textb

NOTE Table note.
a Table footnote.
b Second table footnote.

[NOTE to the drafter: For indented text, it is recommended to create new cells instead of using tabs. Similarly,
when aligning text to the right or center, use Word alignment buttons rather than tabs.]

A.3 Example of a figure

Dimensions in millimetres

Insert and Link Figure

Key

X definition for X

Y definition for Y

NOTE Figure note.

Figure text.

Figure A.1 — Figure title

20

prEN XXXX:20YY (E)

A.4 Examples of formulae

A + B = C (1)

where

A is … ;

B is … ;

C is … .

[NOTE to the drafter: For simple formulae, the keyboard can be used. For more complex formulae, it is
recommended to use MathType, if available, or MS Word Equation Editor.]

(2)

where

Bi(1) is …

D1 is…

…

21

prEN XXXX:20YY(E)

Annex ZA

(informative)

Relationship between this European Standard and the
[essential]/[interoperability]/[…] requirements of

[Directive]/[Regulation]/[Decision]/[…][Reference numbers of the legal act]
aimed to be covered

[NOTE to the drafter: This is the Generic Annex ZA template. For some Directives/Regulations, specific
templates need to be used and these can be found on the CEN BOSS:
https://boss.cen.eu/reference-material/FormsTemplates/Pages/]

This European Standard has been prepared under a Commission’s standardization request [Full reference to
the request “M/xxx”/”C(2015) xxxx final”] to provide one voluntary means of conforming to [essential] /
[interoperability] / […] requirements of [Directive] / [Regulation] / [Decision] / […] [Reference numbers of
the legal act] [Full title].

Once this standard is cited in the Official Journal of the European Union under that [Directive] / [Regulation] /
[Decision] / […], compliance with the normative clauses of this standard given in Table […] confers, within the
limits of the scope of this standard, a presumption of conformity with the corresponding [essential] /
[interoperability] / […] requirements of that [Directive] / [Regulation] / [Decision] / […], and associated EFTA
regulations.

Table ZA.1 — Correspondence between this European Standard and [Annex … of] / [Article(s) … of]
[Directive] / [Regulation] / [Decision] [Reference numbers of the legal Act]]

[Essential]/
[interoperability]/[…]
Requirements of
[Directive]/[Regulation]/[De
cision] […]

Clause(s)/sub-clause(s) of
this EN

Remarks/Notes

[NOTE to the drafter, to be removed before publication:

This table can be used to accommodate all possible cases and independently how detailed correspondence is
established or is possible to give:

 to declare the correspondence with a general statement ‘all requirements are covered’ by complying ‘all
(or indicated) clauses’ (then the table would contain only one row);

 to declare more detailed correspondence (then the table would contain as many rows as needed).]

WARNING 1 — Presumption of conformity stays valid only as long as a reference to this European Standard
is maintained in the list published in the Official Journal of the European Union. Users of this standard should
consult frequently the latest list published in the Official Journal of the European Union.

WARNING 2 — Other Union legislation may be applicable to the product(s) / [service(s)] / […] falling within
the scope of this standard.

22

https://boss.cen.eu/reference-material/FormsTemplates/Pages/

prEN XXXX:20YY (E)

Bibliography

[1] IEEE/Open Group 1003.1-2017, Standard for Information Technology - Portable Operating System
Interface (POSIX(TM)) Base Specifications, Issue 7.

[2]

23

