
CEN/CLC/JTC 22/WG 3 N 85

CEN/CLC/JTC 22/WG 3 "Quantum Computing and Simulation"

Convenor: Lefebvre Catherine Mrs

LayerModel_Draft04

Document type Related content Document date Expected action
Project / Draft 2024-08-27

https://sd.cen.eu/documents/open/e61a9d01-35a6-4cbe-bb16-59dba8d38991

CEN/TC XXX

Date: 20YY-XX

prEN XXXXX:20YY

Secretariat: XXX

JTC 22 WG3 Quantum Computing

 Layer Model

Draft 04, 2024-08-27

CCMC will prepare and attach the official title page.

prEN XXXX:20YY(E)

Contents Page

European foreword.. . 4

Introduction... 5

1 Scope... 7

2 Normative references.. . 8

3 Terms and definitions... . 9
3.1 Terminology... . 9
3.2 Abbreviations... . 9

4 Overview... 10
4.1 Subclause title... 11
4.2 Subclause title... 11

5 Low level Hardware layers...12
5.1 Cryogenic Solid State... . 12
5.2 Room Temperature Solid State...13
5.3 Trapped Ions.. . 13
5.4 Neutral Atoms.. . 14
5.5 Photonic quantum computing...14
5.6 Other….. . 15

6 Hardware abstraction Layer (HAL)...16
6.1 Organization of qubits.. . 16
6.2 The concept of native gates..16
6.3 Concept of primitive gates..17
6.4 Concept of measurement... .18
6.5 Interfacing considerations.. .18

7 Assembly layer.. . 18

8 Programming layer... 19
8.1 Programming Languages and Libraries...19
8.2 Quantum Compilation.. 19

9 Applications / Services supporting use cases..20

10 Communication Module... . 21

Annex A (informative)111 Title of Annex A, e.g. Example of a table, a figure and a formula........ .22

A.1 Clause title.. . 22

A.1.1.1 Subclause title... 22

A.1.1.1.1 Subclause title.. . 22

A.1.1.1.1.1 Subclause title.. . 22

A.2 Example of a table.. . 22

Table A.1 — Table title... 22

A.3 Example of a figure..22

2

prEN XXXX:20YY (E)

A.4 Examples of formulae... . 23

Annex ZA (informative) Relationship between this European Standard and the
[essential]/[interoperability]/[…] requirements of
[Directive]/[Regulation]/[Decision]/[…][Reference numbers of the legal act] aimed
to be covered... 24

Table ZA.1 — Correspondence between this European Standard and [Annex … of] /
[Article(s) … of] [Directive] / [Regulation] / [Decision] [Reference numbers of the
legal Act]].. . 24

Bibliography.. 25

[NOTE to the drafter: To update the Table of Contents please select it and press "F9". To recreate the
Table of Contents, select Custom Table of Contents – Options and choose the appropriate headings/titles
to display. For further instructions, see the CEN Simple Template Quick Start Guide.]

3

prEN XXXX:20YY(E)

European foreword

This document (prEN XXXX:20YY) has been prepared by Technical Committee CEN/TC XXX “Title”, the
secretariat of which is held by XXX.

This document is currently submitted to the CEN Enquiry/Formal Vote/Vote on TS/Vote on TR.

This document will supersede EN XXXX:YYYY.

EN XXXX:YYYY includes the following significant technical changes with respect to EN XXXX:YYYY:

This document has been prepared under a Standardization Request given to CEN by the European
Commission and the European Free Trade Association, and supports essential requirements of
EU Directive(s) / Regulation(s).

For relationship with EU Directive(s) / Regulation(s), see informative Annex ZA, ZB, ZC or ZD, which is
an integral part of this document.

[NOTE to the drafter: Add information about related documents or other parts in a series as necessary.
A list of all parts in a series can be found on the CEN website: www.cencenelec.eu.]

4

prEN XXXX:20YY (E)

Introduction

A layer model is an abstract description of a (computing) system via a common stack of layers. The
layer model for quantum computing slices down the overall complexity of quantum computing into two
main layer models of addressing the whole system. The lower main layer model addresses mainly
hardware, and it is dependent of the physical platform. The upper main layer model addresses mostly
software at a higher level of abstraction.

Each of these two main layer models comprises a stack of inner layers. The lower (hardware) main layer
model comprises multiple stacks, one for each identified architecture family.

The higher up in the stack the more hardware-agnostic the inner layers of the upper (software) main layer
model will gradually be. By agnostic we mean that the same system works for different quantum computing
hardware platforms such as solid state quantum computing, ion traps, neutral atoms, optical quantum
computing and topological quantum computing.

This structure decouples the software design from the hardware design to some extent, which has clear
advantages, such as the reusability of algorithms for different hardware. At the same time the structure does
not impose a fully hardware-agnostic upper main layer model to encompass the design of quantum hardware
and software in a co-design approach, that is, adapt software to make optimal use of the hardware used and the
vice versa. This approach is inevitable for current and near-future quantum computer development, just as it
turned out to be vital for classical computers in early stage and current classical computing disciplines, e.g., in
microcontroller design.

The first purpose of this document is to define a common language that will be used to describe the
features and functional requirements for each layer of the stack of a quantum computer. Another
purpose is to analyse and describe the interaction between the layers by means of well-defined
interfaces. These are essential steps towards interworking between modules from different origins. The
functional description of each layer should offer sufficient guidance on where a desired functionality
should be described, and what kind of exchange is needed with other modules through the interfaces.
The boundaries between the layers are natural locations for such interfaces. Correctly defining such
boundaries requires careful analysis of the interaction between the layers.

Editor’s note: The question has been raised if a strict description of the concept “layer” should be included
here (or in another chapter), as well as an explanation of the purpose of layers. Functionalities like
Quantum Error Corrections are typically distributed over several layers, including low-level hardware
solutions, the concept of logical qubits, error-correcting algorithms, etc. Such distributed functionalities
should not be confused with a single layer within the context of this document

5

prEN XXXX:20YY(E)

[NOTE to the drafter: If patent rights have been identified during the preparation of the document, the
following text shall be included:

“The European Committee for Standardization (CEN) draws attention to the fact that it is claimed that
compliance with this document may involve the use of a patent concerning (…subject matter…) given in
(…subclause…) and which is claimed to be relevant for the following clause(s) of this document:

 Clause(s)…

CEN takes no position concerning the evidence, validity and scope of this patent right. The holder of this
patent right has assured CEN that they are willing to negotiate licences under reasonable and non-
discriminatory terms and conditions with applicants throughout the world. In this respect, the
statement of the holder of this patent right is registered with CEN. Information may be obtained from:

Name of holder of patent right …

Address ...

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights other than those identified above. CEN shall not be held responsible for identifying any or
all such patent rights.”]

6

prEN XXXX:20YY (E)

1 Scope

This document describes a layer model that covers the entire stack of universal gate-based quantum
computers. The group of lower-level (hardware) layers are organized in different hardware stacks
tailored to different hardware architectures, while the group of higher-level (software) layers are built
on top of these and expected to be common for all quantum computing systems. The higher-up in the
stack, the more agnostic it will be from underlying layers. Reducing the dependencies between higher
and lower layers is a crucial point for optimized quantum computations. A co-requisite point is to allow
for a free but well-defined flow of information up and down the higher and lower layers to allow for co-
designing hardware and software.

The scope of this document is limited to a universal gate-based quantum-computing model, also known
as a digital or circuit quantum-computing model, on multiple physical systems such as transmon, spin-
qubit, ion-trap, neutral-atom, and other. This limitation keeps technologies like the universal adiabatic
quantum-computing model, and its heuristic form quantum annealing, as out of scope if they do not
correspond to a gate-based quantum circuit. Moreover, this limitation keeps quantum computing
models that are not universal, such as quantum simulators and special purposes, as out of scope.

Limiting the scope to a universal gate-based quantum computing model is justified by expected
commonalities at the higher layers, mainly above the hardware abstraction layer (HAL), up to the
application layer. These commonalities imply a market for software products usable for this wide range
of quantum computing technologies.

This document is limited to a high-level (functional) description of the layers involved. Additional
details of the individual layers will be described in other future CEN/Trs.

Editor’s note: Whereas quantum-computing technologies that are not “universal gate-based” are out of
scope of the present document, proponents of such technologies are welcome to develop dedicated layer
models for those in a dedicated Work Item.

Editor’s note: It was remarked at the WG3 meeting of 17 May 2024 that the scope of the present document
could potentially be narrowed down even further. Any proposal for this can be submitted as contribution
to the present WG3 Work Item.

Editor’s note: It was remarked at the WG3 meeting of 17 May 2024 that the present document would
benefit from documentation of the abstract computing model for universal gate-based quantum
computers, complementary to hardware layer descriptions. Contributions on this are welcome.

Editor’s note: The document (e.g. section 4, section 5.5) may need to be checked about photonic quantum
computing, as not all classes of photonic quantum computing are “universal”. Contributions on this are
welcome.

Editor’s note: The document (e.g. section 9, section 10) may need to be checked about quantum
annealing, which is not “universal gate-based”. Most likely that section needs to be revised such that only
a single computing model is described. Contributions on this are welcome.

Editor’s note: It was remarked at the WG3 meeting of 17 May 2024 that more details are needed on
software modularity (“upward compatibility”?). Contributions on this are welcome.

Editor’s note: It needs to be clarified to what extent “the universal one-way quantum computing model
known as cluster state, and the universal variational quantum computing model known as a hybrid”
(measurement-based quantum computing or variational quantum computing) are within or outside the
scope of the present document. Contributions on this are welcome.

7

prEN XXXX:20YY(E)

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.

[NOTE to the drafter: The Normative references clause is compulsory. If there are no normative
references, add the following text below the clause title: "There are no normative references in this
document."]

EN XXXX, Title of document

EN XXXX-1:20YY, General title of series — Part X: Title of part

EN XXXXX (all parts), General title of series

[NOTE to the drafter: If a dated reference is impacted by a standalone amendment or corrigendum, list
the main standard and include a footnote as follows:

EN XXXX:20YY1, General title]

1 As impacted by EN XXXX:20YY/A1:20YY.

8

prEN XXXX:20YY (E)

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply:

ISO and IEC maintain terminology databases for use in standardization at the following addresses:
 ISO Online browsing platform: available at https://www.iso.org/obp/
 IEC Electropedia: available at https://www.electropedia.org/

3.1 Terminology

Codesign - A design approach where (software) modules query lower layers for identifying the
(hardware) capabilities and limitations of a system and subsequently tailor their behaviour to these
capabilities and limitation. This approach allows for hardware-specific optimizations and adaptations to
optimize quantum computations.

Gate-based quantum computing - A gate-based quantum computer processes a sequence of
instructions (called a quantum circuit) to change the state of a quantum register with many qubits
before the resulting state is queried by measurements. The instructions may comprise gates, mid-circuit
measurements and state preparations. Gates are unitary operations acting on a set of qubits. A gate-
based quantum computer can be characterized by a gate set, wherein the gate set is composed of gates
which can be performed by the quantum computer.

ISA – An “Instruction set architecture” is a lower-level method of defining operations on a quantum
computer. Instead of defining specific gates, this method defines gates (or other instructions) as
operations, using pulses pulsed for a certain time, on specific qubits.

Universal gate-based quantum computing - A universal quantum computer is defined as a quantum
computer being capable of processing an arbitrary quantum circuit. A universal gate-based quantum
computer must have a gate set which is universal. A gate set is said to be universal if any unitary
operation may be approximated to arbitrary accuracy by a quantum circuit involving only those gates
[Nielsen & Chuang, Quantum Computation and Quantum Information]. The definition also comprises
non-fault-tolerant universal quantum computers, which can process an arbitrary quantum circuit
reliably only up to a certain length, size or gate count.

Editor’s note: Please include the cited reference in the Bibliography section.

3.2 Abbreviations

API - Application Programming Interface

ISA – Instruction Set Architecture

PCB – Printed Circuit Board

SDK – Software Development Kits

QEC – Quantum Error Correction

9

https://www.iso.org/obp/ui

prEN XXXX:20YY(E)

4 Overview

Quantum computing is an area covering many different implementations. A convenient way of
specifying its requirements is via a stack of layers, as shown in Figure 4.1. The layers are chosen in such
a manner that the functionality of each layer can be described in an independent manner. This causes
that the interworking between these layers can be described through well-defined interfaces at the
boundaries of these layers. Note that such an interface can be virtual (hidden internally within the
implementation of the same origin) or real (between implementations of different origin).

The stack covers hardware layers, software layers, modules and functionalities. The legend describing
each colour can be seen in Figure 4.1. While layers can be defined with well-defined boundaries, a
module is an implementation that may be constructed from (smaller) modules and components, which
could offer the functionality of a single layer, of multiple layers, or just of a fragment of a layer. A
module may also support different operating modes, such that it complies with the requirements of
multiple members and/or multiple architecture families. As such, the functionality of a module may
cover multiple layers and/or families and/or members. Functionalities can be described as features or
optional components a specific layer may possess. Each layer aims to be more agnostic to the exact
implementation of lower layers. The layers are described in further detail in succeeding chapters.

Figure 4.1 - Overview of the layer model of quantum computing.
It supports multiple hardware implementations in the hardware layers

The layered approach allows for using different hardware stacks for specifying the requirements of
different architecture families. Each architecture family can have multiple members (Cryogenic Solid
State Quantum Computing, Technology #2, Technology #3) and the description of its hardware layers
may account for differences between these members. The diagram in Figure 4.1 has illustrated this
symbolically by drawing a non-specific blue square in place of the hardware layers for different

10

prEN XXXX:20YY (E)

members of the same family. The dashed blue line signifies the generalization of knowledge required
for the backend.

In Figure 4.1, the cryogenic solid state quantum computer is shown in more detail, however different
quantum hardware may have different hardware layer stacks as seen in technology #2 & #3. So far, the
following quantum architecture families have been identified (in arbitrary order):

 Cryogenic solid-state based;
 Room temperature solid-state based;
 Trapped ions;
 Neutral atoms;
 Photonic quantum computing;
 Other architectures that may be identified in the future

These architectures are described in further detail in succeeding chapters.

4.1Subclause title

4.2Subclause title

4.2.1 Subclause title

4.2.1.1 Subclause title

4.2.1.1.1 Subclause title

4.2.1.1.1.1 Subclause title

Text of subclause.

11

prEN XXXX:20YY(E)

5 Low level Hardware layers

5.1Cryogenic Solid State

The members of this architecture family have in common that they all make use of a cryostat, where the
quantum devices in a holder are controlled from outside the fridge by room-temperature electronics.
Consequently, a huge amount of control channels is required to interconnect those two, especially when
many qubits are to be controlled in a single fridge.

The following members have been identified within this architecture family:
 Transmons;
 Flux qubits;
 Semiconductor spin qubits;
 Topological qubits;
 Artificial atoms in solids.

Four hardware layers have been identified for this architecture family.

5.1.1 Layer 1 – Quantum Devices

The quantum devices in hardware layer 1 are modules with qubits that are typically operating at
cryogenic temperatures and may be implemented as chip and/or on PCB. They may have though
requirements on shielding, operating temperature, magnetic aspects, etc.

5.1.2 Layer 2 – Control Highway

Hardware layer 2 covers all infrastructure needed for transporting microwave, light wave, RF and DC
signals (via electrical and/or optical means) between the control electronics at room temperature and
the quantum devices at cryogenic temperatures. It is usually a mix of transmission lines, filtering,
attenuation, amplification, (de)multiplexing, as well as means for proper thermalization. A huge number
of control channels are required to control many qubits in a single fridge (which clarifies the name) and
this can easily become very bulky. It could have tough requirements on aspects like heat-flow, thermal
noise and vacuum properties.

5.1.3 Layer 3 – Control Electronics

Hardware layer 3 covers all electronics for generating, receiving, and processing microwave, RF and DC
signals. Some implementations make use of routing/switching and/or multiplexing of control signals at
room temperatures. It may have some firmware on board to guide the signal generation and signal
processing.

As shown in Figure 4.1, this layer includes a small software layer in order to translate a unified way to
instruct the control hardware into implementation-specific (proprietary) commands tailored to the
electronics. An example is the translation of wave pulse shapes, defined as an array of samples, into
proprietary commands for storing them into the memory of an AWG (Arbitrary Waveform Generator).

12

prEN XXXX:20YY (E)

5.1.4 Layer 4 – Control Software

The control software refers to the software systems and tools designed to manage, coordinate and
optimize operations dictated by higher level languages. Thus, the software plays a crucial role in
translating higher-level quantum assembly instructions into executable instructions that can be
processed by quantum processors.

This layer may include an instruction set architecture (ISA), error correction and calibration
functionalities (as seen in Figure 4.1). Error correction is mitigated by the implementation of strategies
to detect and correct potential errors that can occur during the computation. Similarly, calibration is the
continuous monitoring of hardware performance to maintain optimal operation.

ISA (Instruction set architecture) refers to a lower-level method of defining operations on a quantum
computer. Instead of defining specific gates, this layer defines gates (or other instructions) as
operations, using pulses pulsed for a certain time, on specific qubits. An example of an instruction set
architecture is pulse level programming where a user can specify wave pulses on qubits instead of
gates. This requires knowledge of the system’s control equipment as well as the topology and qubit
nature.

5.2Room Temperature Solid State

The members of this architecture family have in common that solid-state qubits are all operating at
room temperatures. Examples of members in this architecture family are:

— Artificial atoms in solids, such as NV centres;
— Optical quantum dots.

5.2.1 Layer 1 – Quantum Devices

5.2.2 Layer 2 – ...

5.2.3 Layer 3 – ...

5.2.4 Layer 4 – …

5.3Trapped Ions

The members of this architecture family can operate either at room temperature or at cryogenic
temperatures (e.g. 4K). Quantum devices are controlled by electronics operating either at room
temperature or under cryogenic conditions. For a larger number of qubits, the required amount of
routing signals becomes bulky, and efficient thermal management, low-noise electrical and magnetic
components are required.

Room temperature architectures that are identified are
— Optical qubits;
— Raman qubits;
— Spin (microwave) qubits;

Cryogenic (4K) architectures that are identified are
— Optical qubits;
— Raman qubits;
— Spin (microwave) qubits

13

prEN XXXX:20YY(E)

5.3.1 Layer 1 – Quantum Devices

5.3.2 Layer 2 – ...

5.3.3 Layer 3 – ...

5.3.4 Layer 4 – …

5.4Neutral Atoms

Systems of individually-controlled neutral atoms, interacting with each other when excited to Rydberg
states, have emerged as a possible platform for quantum information processing. The two main
examples are ensembles of individual atoms trapped in optical lattices or in arrays of microscopic
dipole traps separated by a few micrometres. In these platforms, the atoms are almost fully controllable
by optical addressing techniques.

5.4.1 Layer 1 – Quantum Devices

5.4.2 Layer 2 – ...

5.4.3 Layer 3 – ...

5.4.4 Layer 4 – …

5.5Photonic quantum computing

These architectures have in common that the quantum information during computing is encoded into
photonic properties. We can divide different families of photonic quantum computers in two categories,
universal and non-universal quantum computers. Non-universal quantum computers cannot perform
every task but can at least perform one task.

Non-universal photonic quantum computing families that are identified are:
— Boson sampling;
— Gaussian boson sampling.

Universal families that are identified are:
— Knill-Laflamme-Milburn scheme (This was a theoretical proof-of-principle, but not practically
feasible);
— Measurement based quantum computing using cluster states;
— Continuous variable quantum computing.

14

prEN XXXX:20YY (E)

5.5.1 Layer 1 – Quantum Devices

5.5.2 Layer 2 – ...

5.5.3 Layer 3 – ...

5.5.4 Layer 4 – …

5.6Other…

Other architectures may be identified in future, and will then be added to this list.

15

prEN XXXX:20YY(E)

6 Hardware abstraction Layer (HAL)

The aim of the Hardware Abstraction Layer for universal gate-based quantum computers is to inform
higher layers with capabilities and limitations supported by the underlying hardware. Layers above the
HAL can use this information to hide many implementation-specific details to higher layers by offering a
more unified interface. Layers above may also use this information to provide higher-level commands to
programmers or programs allowing for implementing hardware-specific optimizations and adaptations.

Not all quantum computers make use of the same paradigm. Annealing quantum computers behave
differently from gate-based quantum computers, and therefore their HALs might be different as well.
The HAL can therefore provide information about the underlying architecture, such as for instance
being “gate-based”, “annealing” or “simulation”.

A gate-based quantum computer processes a sequence of instructions to change the state of a quantum
register with many qubits before the resulting state is queried by measurements. A convenient graphic
representation of such a sequence has the appearance of a circuit where the elements seem to operate
on one or more qubits simultaneously. Due to this convenient graphic representation, these instructions
are called gates.

6.1 Organization of qubits

Quantum register: A quantum register is a system comprising multiple qubits. The HAL supports
instructions to operate on such a register, for initializing, changing, and querying its state.

Width: The HAL can specify the number of available qubits and how they are organized in these
registers. It can also specify if all qubits are part of a single quantum register or if are they are allocated
to multiple (smaller) registers. The use of multiple registers may occur when using modular hardware
architectures.

Depth: The HAL can specify the maximum depth for circuits of gates that can be executed before the
calculated result becomes unreliable. This value is related to coherence time of the implementation and
other imperfections of underlying hardware.

Connections: The HAL can also provide an "adjacency matrix" for each quantum register, to indicate
which qubits are edge-connected. For instance, when a register has N qubits, then this adjacency matrix
C has size NxN. The default of each element in this matrix is false, but if qx and qy are the indices of two
adjacent qubits then C(qx,qy)=C(qy,qx)=true. Matrix C is therefore a symmetric matrix, since
C(k,r)=C(r,k).

The HAL can provide additional information about the underlying architecture.

6.2 The concept of native gates

The HAL can specify a list of "native gates" supported by the underlying hardware. The name "native
gate" refers to an operation for changing the quantum state of a register by means of a "single" physical
action on one or more qubits simultaneously. An example is a single pulse composition that cannot be
broken down into two or more shorter pulse compositions. In other words, if a gate can be divided into
two or more shorter independent sequential physical actions, it is not native.

As a result, a native gate can be executed in the minimum amount of execution time. Knowledge about
which gates are native is relevant information for compilers that try to optimize a circuit with respect to
execution time.

Gates that can only be implemented by a sequence of two or more native gates are called "compound"
gates.

16

prEN XXXX:20YY (E)

The boxed example in figure 6.1 illustrates for a specific case that the single qubit gates X, Y, Rx(a),
Ry(b) are all native for that implementation, while the gates Z and Rz(c) are compound gates. A similar
example can be elaborated with dual qubit gates. For a specific implementation, a gate like CNOT may
turn out to be compound as well when it cannot be implemented with one native dual qubit gate.

Example

The concept of native gates can be explained by the following example. Assume that a specific
hardware implementation supports a mechanism to rotate a qubit via a "single" pulse
composition that can be controlled with two real parameters "a" and "b". Assume that the
definition of this rotation function equals:

 RN(a,b) = [cos(a/2), -j*exp(-j*b)*sin(a/2)]

 [-j*exp(j*b)*sin(a/2), cos(a/2)]

Then some of the well known gates can be implemented via:

 Rx(a) = [cos(a/2), -j*sin(a/2)] = RN(a,0)

 [-j*sin(a/2), cos(a/2)]

 Ry(b) = [cos(b/2), -sin(b/2)] = RN(a,pi/2)

 [sin(b/2), cos(b/2)]

 Rz(c) = [exp(-j*c/2), 0] = RN(pi,0) * RN(pi,-c/2) * exp(j*pi)

 [0, exp(j*c/2)]

 X = [0, 1] = Rx(pi) * exp(j*pi/2) = RN(pi,0) * exp(j*pi/2)

 [1, 0]

 Y = [0, -j] = Ry(pi) * exp(j*pi/2) = RN(pi,pi/2) * exp(j*pi/2)

 [+j, 0]

 Z = [1, 0] = Rz(pi) * exp(j*pi/2) = RN(pi,pi) * RN(pi,pi/2) * exp(-j*pi/2)

 [0, -1]

In this hardware implementation, Rx(a), Ry(b), X, Y can be considered as native gates. The gates
Rz(c) and Z are to be combined from two sequential native gates, so they are compound.
Knowledge about which gates are native is relevant for quantum algorithms that try to find an
optimal circuit representation in terms of execution time.

Figure 6.1 - Example of a specific hardware implementation,
where Rx, Ry, X, Y are native gates and Rz, Z are compound gates

6.3 Concept of primitive gates

A compiler or interpreter does not always know how to convert well-known gates into a smart
combination of native gates for any possible set of native gates. In those cases, a fall-back situation
should be supported by the HAL in terms of predefined solutions for well-known gates like Rx(a), Ry(b),
Rz(c), X, Y, Z, H, S, T, CNOT, etc.

17

prEN XXXX:20YY(E)

Therefore, the HAL can specify a list of "primitive gates" that it can emulate by a sequence of one or
more native gates.

6.4 Concept of measurement

The HAL supports instructions to query the state of one or more qubits in a quantum register by means
of a measurement. The answer will be returned as a binary string stored in a dedicated register. Note
that the state will be collapsed after such a query.

The HAL also supports instructions to read out the bits in this register and/or to use these bits for
instructing controlled gates.

If the hardware supports it, the HAL can also offer instructions to specify the basis for these
measurements.

6.5 Interfacing considerations

A preferred way of communicating with the HAL is by means of binary instructions, preferably common
for all quantum computing implementations. Therefore, it requires a list of binary commands for letting
the HAL report capabilities and limitations of the underlying hardware, and for executing all
aforementioned instructions.

Such an interface may also offer a convenient format for instructing a simulator that emulates a
quantum computer with a limited set of qubits.

7 Assembly layer

This layer concerns quantum assembly languages (QASM) that describe quantum computations
according to one specific model (e.g., circuit model, measurement-based model, quantum annealing
model), with a per-architecture instruction set.

QASM is not a single assembly language and the syntax may also differ among various implementations.
Languages for gate-based quantum computing have in common that they can describe universal circuits
with single qubit gates, and entangled gates such as CNOT. Due to the huge diversity of quantum
computing architectures, it is not likely that a unique, widely accepted QASM would emerge and later
become a standard.

18

prEN XXXX:20YY (E)

8 Programming layer

The specification of quantum algorithms using register-level representation languages is not easy for
programmers. Indeed, quantum assembly programs are usually generated by a software library, from a
piece of code written in a common programming language, such as Python.

In general, the Programming Layer includes all the languages, libraries, and software development
facilities for coding quantum algorithms or high-level applications that use predefined quantum
algorithms as subroutines.

8.1Programming Languages and Libraries

In the quantum computing domain, Python is the most used high-level programming language. It is a
general-purpose imperative language, as it allows developers to write code that specifies the steps the
computer must take to accomplish the goal. Other imperativelanguages have been designed on purpose
for quantum computing, such as Q# and Silq.

Alternative to imperative programming is functional programming, where programs are constructed by
applying and composing functions. In the quantum computing domain, there are a few functional
programming languages, such as QPL and Quipper.

Writing a program in a high-level language implies using software development kits (SDKs) that include
application programming interfaces (APIs) for coding quantum algorithms from scratch, but also
collections of ready-to-use quantum algorithms. The APIs may be very different, depending on the
quantum computational model (quantum circuit model, quantum annealing, measurement-based
quantum computation, etc.) and specific application domain (quantum optimisation, quantum machine
learning, etc.).

For Python programmers, there are several advanced SDKs. Some of them are bound to proprietary
hardware platforms. Other SDKs are general-purpose and support device architectures from multiple
providers.

8.2Quantum Compilation

Being high-level programs hardware-agnostic, quantum compilers are necessary to translate abstract
quantum algorithms into the most efficient equivalents of themselves, considering the constraints and
features exposed by the Register-level representation layer.

For simplicity, we refer to the quantum circuit model of computation. In this context, the input to the
quantum compiler is a quantum circuit including single or multi-qubit gates. Usually, the input circuit is
the simplest (and most elegant) representation of a quantum algorithm (e.g., the Quantum Fourier
Transform). Such a representation does not consider the constraints that may characterise the target
quantum computer, such as the available gate set and the connectivity constraints between which
qubits a two-qubit gate is natively allowed.

The quantum compiler leverages information provided by the Register-level representation layer to
translate the input circuit into an equivalent circuit that fits the target device.

An example is provided in figure 8.1, in which a quantum circuit is compiled into another quantum
circuit by considering the connectivity constraints of the target quantum computer.

19

prEN XXXX:20YY(E)

Figure 8.1 – The circuit on the left does not fit the connectivity constraints of the target
device, which are described by the graph in the middle of the figure. The circuit on the right is
the compiled version of the circuit on the left, i.e., functionally equivalent but fitting the
target device. To produce the output circuit, the compiler chose a different mapping for the
input circuit’s qubits to the device qubits and inserted a SWAP gate before the last CNOT
gate.

The description format of the output circuit may be different from the description format of the input
circuit. If the input and output circuits have the same description format, the compiler is often denoted
as “transpiler”.

9 Applications / Services supporting use cases

This layer contains the user-side where a problem exists that requires solving. Quantum computers can
help solving this problem and the user can then start programming algorithms to obtain the sought for
answer. Depending on the used service, users may perform tasks locally on a quantum computer. An
alternative is that tasks run mainly remotely on a classical computer and use a quantum cloud service to
run specific tasks on a dedicated quantum computer.

20

prEN XXXX:20YY (E)

10 Communication Module

Currently, commercial quantum computers are built for cloud-based computing, or at least offer access
to different end-users. This means that users wanting to execute algorithms on a gate-based quantum
computer from outside the stack must place a request to get access to one or more (software) layers
inside the stack. For this purpose, it is crucial that each layer can be reached by the communication
module.

The communication module can exchange messages with client applications that run outside the
quantum stack, for instance on a nearby computer or on a remote server somewhere in the cloud. It
can handle all messages that are needed for starting a quantum computing session (for instance
handshaking, authentication, resource allocation, billing, rights-management, etc.). A quantum
computing session offers an application the experience as if it has its own resources and as if it is fully
protected from other applications. Figure 4.1 shows a few of these functionalities the communication
module may possess.

Once a session is initiated, the communication module can start handling incoming messages for
instructing layers higher up in the stack. For instance, to load and run a quantum assembly task.
Results can be passed back to the communication module, which in turn can send messages with those
results to the client application outside the quantum stack.

The communication module can also communicate directly with lower layers in the quantum stack,
provided that the client application is allowed to according to allocated usage rights. For instance, to
send low-level commands directly to the control electronics for firing a specific pulse to a qubit. And
again, detected results from the control electronics can also be passed back to the communication
layer, which in turn can send messages with those results to the client application outside the
quantum stack.

21

prEN XXXX:20YY(E)

Annex A
(informative)111

Title of Annex A, e.g. Example of a table, a figure and a formula

A.1 Clause title

A.1.1 Subclause title

A.1.1.1 Subclause title

A.1.1.1.1 Subclause title

A.1.1.1.1.1 Subclause title

Text of the annex.

A.2 Example of a table

Table A.1 — Table title

Table headera

Table text Textb

NOTE Table note.
a Table footnote.
b Second table footnote.

[NOTE to the drafter: For indented text, it is recommended to create new cells instead of using tabs.
Similarly, when aligning text to the right or center, use Word alignment buttons rather than tabs.]

A.3 Example of a figure

Dimensions in millimetres

Insert and Link Figure

Key

X definition for X

Y definition for Y

NOTE Figure note.

Figure text.

Figure A.1 — Figure title

22

prEN XXXX:20YY (E)

A.4 Examples of formulae

A + B = C (1)

where

A is … ;

B is … ;

C is … .

[NOTE to the drafter: For simple formulae, the keyboard can be used. For more complex formulae, it is
recommended to use MathType, if available, or MS Word Equation Editor.]

(2)

where

Bi(1) is …

D1 is…

…

23

prEN XXXX:20YY(E)

Annex ZA

(informative)

Relationship between this European Standard and the
[essential]/[interoperability]/[…] requirements of

[Directive]/[Regulation]/[Decision]/[…][Reference numbers of the legal
act] aimed to be covered

[NOTE to the drafter: This is the Generic Annex ZA template. For some Directives/Regulations, specific
templates need to be used and these can be found on the CEN BOSS:
https://boss.cen.eu/reference-material/FormsTemplates/Pages/]

This European Standard has been prepared under a Commission’s standardization request [Full
reference to the request “M/xxx”/”C(2015) xxxx final”] to provide one voluntary means of conforming
to [essential] / [interoperability] / […] requirements of [Directive] / [Regulation] / [Decision] / […]
[Reference numbers of the legal act] [Full title].

Once this standard is cited in the Official Journal of the European Union under that [Directive] /
[Regulation] / [Decision] / […], compliance with the normative clauses of this standard given in Table
[…] confers, within the limits of the scope of this standard, a presumption of conformity with the
corresponding [essential] / [interoperability] / […] requirements of that [Directive] / [Regulation] /
[Decision] / […], and associated EFTA regulations.

Table ZA.1 — Correspondence between this European Standard and [Annex … of] / [Article(s) …
of] [Directive] / [Regulation] / [Decision] [Reference numbers of the legal Act]]

[Essential]/
[interoperability]/[…]
Requirements of
[Directive]/[Regulation]/[De
cision] […]

Clause(s)/sub-clause(s) of
this EN

Remarks/Notes

[NOTE to the drafter, to be removed before publication:

This table can be used to accommodate all possible cases and independently how detailed
correspondence is established or is possible to give:

 to declare the correspondence with a general statement ‘all requirements are covered’ by
complying ‘all (or indicated) clauses’ (then the table would contain only one row);

 to declare more detailed correspondence (then the table would contain as many rows as needed).]

WARNING 1 — Presumption of conformity stays valid only as long as a reference to this European
Standard is maintained in the list published in the Official Journal of the European Union. Users of this
standard should consult frequently the latest list published in the Official Journal of the European
Union.

WARNING 2 — Other Union legislation may be applicable to the product(s) / [service(s)] / […] falling
within the scope of this standard.

24

https://boss.cen.eu/reference-material/FormsTemplates/Pages/

prEN XXXX:20YY (E)

Bibliography

[1] IEEE/Open Group 1003.1-2017, Standard for Information Technology - Portable Operating
System Interface (POSIX(TM)) Base Specifications, Issue 7.

[2]

25

