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European foreword

This  document  (prEN XXXX:20YY)  has  been  prepared by  Technical  Committee  CEN/TC JTC22/WG3 
“Quantum Computing and simulation”, the secretariat of which is held by XXX.

This document is currently submitted to the CEN Enquiry/Formal Vote/Vote on TS/Vote on TR.

This  document has been prepared under a Standardization Request  given to CEN by the European 
Commission  and  the  European  Free  Trade  Association,  and  supports  essential  requirements  of 
EU Directive(s) / Regulation(s).
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Introduction

A layer model is an abstract description of a (computing) system via a common stack of layers. The 
model for gate-based quantum computing, in scope1 of this Technical Report, slices down the overall 
complexity of quantum computing into two main groups of layers, addressing this quantum system. The 
group of lower layers addresses mainly hardware, and is dependent of the physical platform. The group 
of upper layers addresses mostly software at a higher level of abstraction. 

The group of lower (hardware) layers comprises multiple stacks, one for each identified architecture family.

The higher up in the stack the more hardware-agnostic the inner layers of the upper (software) main layer  
model will gradually be. By agnostic we mean that the same system works for different quantum computing  
hardware  platforms  such  as  solid  state  quantum  computing,  ion  traps,  neutral  atoms,  optical  quantum 
computing and topological quantum computing.

This  structure  decouples  the  software  design from the  hardware  design to  some extent,  which has  clear 
advantages, such as the reputability of algorithms for different hardware. At the same time the structure does  
not impose a fully hardware-agnostic group of upper layers to encompass the design of quantum hardware and 
software in a co-design approach, that is, adapt software to make optimal use of the hardware used and the 
vice versa. This approach is inevitable for current and near-future quantum computer development, just as it 
turned out to be vital for classical computers in early stage and current classical computing disciplines, e.g., in 
micro-controller design.

One purpose of this document is to define a common language that can be used to describe the features 
and functional requirements for each layer of the stack of a quantum computer. Another purpose is to 
analyse and describe the interaction between the layers by means of well-defined interfaces. These are 
essential  steps  towards  interworking  between  modules  from  different  origins.  The  functional 
description of each layer ought to offer sufficient guidance on where a desired functionality is to be 
described,  and  what  kind  of  exchange  is  needed  with  other  modules  through  the  interfaces.  The 
boundaries  between  the  layers  are  natural  locations  for  such  interfaces.  Correctly  defining  such 
boundaries demand for careful analysis of the interaction between the layers.

1 This limitation keeps technologies like the universal adiabatic quantum-computing model, the universal photonic 
one-way quantum computing model and its heuristic form quantum annealing,  as out of scope if  they do not 
correspond to a gate-based quantum circuit.
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1 Scope

This document defines a layer model  that  covers the entire stack of  universal  gate-based quantum 
computers.  The group of  lower-level  (hardware)  layers  are  organized in  different  hardware stacks 
tailored to different hardware architectures, while the group of higher-level (software) layers are built 
on top of these and expected to be common for all quantum computing systems. The higher-up in the 
stack, the more agnostic it will be from underlying layers. Reducing the dependencies between higher 
and lower layers is a crucial point for optimized quantum computations. A co-requisite point is to allow 
for a free but well-defined flow of information up and down the higher and lower layers to allow for co-
designing hardware and software.

The scope of this Technical Report is restricted to a universal gate-based quantum-computing model, 
also known as a digital  or circuit  quantum-computing model,  on multiple  physical  systems such as 
transmon, spin-qubit, ion-trap, neutral-atom, and others. This document does not apply to technologies 
like the universal  adiabatic  quantum-computing model and its  heuristic  form quantum annealing,  if 
they do not correspond to a gate-based quantum circuit. Due to major architecture differences in lower 
layers,  it  does not apply either to the universal  photonic  one-way quantum computing model  even 
though  it  is  fully  compatible  with  gate-based  quantum-computing  model.  Moreover,  quantum 
computing models that are not universal, such as quantum simulators and special purposes, are also out 
of scope.

Limiting  the  scope  to  a  universal  gate-based  quantum  computing  model  is  justified  by  expected 
commonalities  at  the  higher  layers,  mainly  above the  hardware abstraction  layer  (HAL),  up to  the 
service layer. These commonalities imply a market for software products usable for this wide range of 
quantum computing technologies.

The present Technical Report is focussed on a high-level (functional) description of the layers involved. 
Additional details of the individual layers are reserved for other future CEN/Trs.

2 Normative references

There are no normative references in this document.
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3 Terms and definitions

For the purposes of this document, the following terms and definitions apply:

ISO and IEC maintain terminology databases for use in standardization at the following addresses: 
 ISO Online browsing platform: available at https://www.iso.org/obp/
 IEC Electropedia: available at https://www.electropedia.org/

3.1

Codesign

design  approach  where  (software)  modules  query  lower  layers  for  identifying  the  (hardware) 
capabilities and limitations of a system and subsequently tailor their behaviour to these capabilities and 
limitation. 

Note 1: This approach allows for  hardware-specific optimizations and adaptations  to optimize quantum 
computations.

3.2 

Gate-based quantum computing

a sequence of instructions (called a quantum circuit) to change the state of a quantum register with 
many qubits before the resulting state is queried by measurements. 

Note 1: The instructions may comprise gates, mid-circuit measurements and state preparations. Gates 
are unitary operations acting on a set of qubits. A gate-based quantum computer can be characterized 
by a gate set,  wherein the gate set  is  composed of  gates which can be performed by the quantum 
computer.

3.3

ISA (Instruction Set Architecture)

a lower-level method of defining operations on a quantum computer. 

Note  1:  Instead  of  defining  specific  gates,  this  method  defines  gates  (or  other  instructions)  as 
operations, using pulses pulsed for a certain time, on specific qubits. 

3.4

Universal gate-based quantum computing

a quantum computer being capable of processing an arbitrary quantum circuit. 

7
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Note 1: A universal gate-based quantum computer ought to have a gate set which is universal. A gate set 
is  said  to  be  universal  if  any  unitary  operation  may  be  approximated  to  arbitrary  accuracy  by  a 
quantum  circuit  involving  only  those  gates  [2].  The  definition  also  comprises  non-fault-tolerant 
universal quantum computers, which can process an arbitrary quantum circuit reliably only up to a 
certain length, size or gate count.

4 Abbreviations

API - Application Programming Interface 

SDK – Software Development Kit

ISA – Instruction Set Architecture

PCB – Printed Circuit Board

SDK – Software Development Kits

QEC – Quantum Error Correction

HAL – Hardware Abstraction Layer

RF – Radio Frequency

DC – Direct Current

AWG – Arbitrary Waveform Generator

NV center - Nitrogen-Vacancy center
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5 Overview

Quantum  computing  is  an  area  covering  many  different  implementations.  A  convenient  way  of 
specifying its requirements is via a stack of layers, as shown in Figure 1. The layers are chosen in such a 
manner that the functionality of each layer can be described in an independent manner. This causes that 
the  interworking  between  these  layers  can  be  described  through  well-defined  interfaces  at  the 
boundaries of  these layers.  Note that such an interface can be virtual  (hidden internally within the 
implementation of the same origin) or real (between implementations of different origin).

The stack covers hardware and software layers, each having dedicated functionalities. A communication 
unit connects the stack with the outside world to prevent unauthorized access to the stack. They are 
described in succeeding chapters. The legend describing each colour can be seen in Figure 1.  Each layer 
aims to be more agnostic to the exact implementation of lower layers. 

A module is within the context of this TR something that can be sold and shipped independently from 
other modules. It can offer the functionality of a single layer, of multiple layers or just a fragment of a 
layer.  In all cases, they require interfaces to let them interwork with other modules. The boundaries 
between  the  layers  are  natural  locations  for  defining  standardised  interfaces  between  layers,  so 
modules can take advantage of that. But when the functionality of a module span two or more layers, 
there is no need to implement the interfaces between the inner layers.

A  module  may  also  support  different  operating  modes,  such  that  it  complies  with  different 
requirements of multiple members and/or multiple architecture families. 

Figure 1 - Overview of the layer model of quantum computing. 

Figure 1 shows an overview of the proposed layer model. In principle, each layer interacts only with the 
one below and above it, but it is not excluded that interaction bypasses a layer to interact directly with 
one deeper or higher. The communication unit can exchange information directly with each layer. The 
dashed line separates the group of higher layers from the group of lower layers. 

A one-size fits all approach may not apply to all these different architectures, and therefore each one 
may have its own stack. The use of four lower layers have shown to be adequate for serving the needs of 
cryogenic solid-state based technologies. Other architectures, depicted in this figure as technology #2 
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and #3, may need another composition of lower layers. Therefore their stack has been drawn as a single 
box, and their details are left for further study.

It is possible that the layer above the dashed line must account for different interfaces below the line 
that are dedicated for each hardware stack. The aim of the hardware abstraction layer is to offer a more 
harmonized and common interface to higher software layers.

 So far, the following quantum architecture families have been identified (in arbitrary order):

 Cryogenic solid-state based;
 Room temperature solid-state based;
 Trapped ions;
 Neutral atoms;
 Photonic quantum computing;
 Molecular spins;
 Other architectures that may be identified in the future

These architectures are described in further detail in succeeding chapters. 

Within  an  architecture  family,  multiple  members  may  exist,  like  transmons  and  spin-qubits  for 
cryogenic solid state QC. Small differences in functionalities of the lower layers may therefore occur as 
well.
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6 Low level Hardware and Control layers 

6.1Cryogenic Solid State 

The members of this architecture family have in common that they all make use of a cryostat, where the 
quantum devices in a holder are controlled from outside the fridge by room-temperature electronics. 
Consequently, a huge amount of control channels is needed to interconnect those two, especially when 
many qubits are to be controlled in a single fridge.

The following members have been identified within this architecture family:
 Transmons;
 Flux qubits;
 Semiconductor spin qubits;
 Topological qubits;
 Artificial atoms in solids.

Four hardware layers have been identified for this architecture family.

6.1.1 Layer 1 – Quantum Devices

The quantum devices in the bottom hardware layer function as modules containing qubits, typically 
operating at  cryogenic temperatures and implemented either as chips or on a PCB.  Their  quantum 
states can be manipulated and read out by sending pulses and measuring their response. These devices 
may also have strict requirements regarding shielding, operating temperature, magnetic conditions, and 
other environmental factors.

6.1.2 Layer 2 – Control Highway

The control highway covers all hardware needed for transporting microwave, lightwave, RF, and DC 
signals, via electrical and/or optical means, between the control electronics at room temperature and 
the  quantum devices  at  cryogenic  temperatures.  It  is  usually  a  mix  of  transmission  lines,  filtering, 
attenuation, amplification, (de)multiplexing, as well as means for proper thermalization.

Downstream signals require attenuation at cryogenic temperatures to keep most of the thermal noise 
away from the qubits. Overall loss values of 50 dB or more are not uncommon. Additional filtering up to 
IR  frequencies  can  reduce  unwanted  out-of-band  noise  even  further.  Since  attenuators  heat  up  by 
dissipating  attenuated  signals,  they  produce  more  thermal  noise  than  desired.  Thermalization  is 
therefore  required  to  keep  attenuators  cool  and  to  drain  away  most  of  the  heat  flow from room 
temperature  nodes  through  the  transmission  lines.  Superconducting  sections  can  offer  additional 
thermal isolation to prevent that qubits heat up.

Upstream signals require low-noise amplification, making it essential to minimize signal loss between 
the qubit and the first amplifier. When TWPAs (Traveling-Wave Parametric Amplifier) are used as the 
first amplification stage, the control highway should transport pump signals as well.

As the number of qubits in a single quantum computer grows rapidly, managing an extensive number of 
channels  within a single cryostat  becomes increasingly  complex.  The size of  a  control  highway can 
easily  become very  bulky,  making  it  more  challenging  to  keep  crosstalk  under  certain  thresholds. 
Outgassing is also an issue that must be kept minimal since the control highway has to operate under 
demanding vacuum conditions. Moreover, it should be designed such that vibrations in the cryostat do 
not induce unwanted signals into the qubits. Therefore, a control highway is more than just a collection 
of  cables;  it  is  a  carefully  designed  subsystem  essential  for  efficient  operation.  A  convenient 
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implementation of a control highway is a module offered as a top or side loader for insertion into a 
cryostat, having all thermalization on board.

6.1.3 Layer 3 – Control Electronics

Hardware layer 3 covers all  room temperature electronics for generating,  receiving,  and processing 
microwave,  RF,  and  DC  signals.  Some  implementations  make  use  of  routing/switching  and/or 
multiplexing of control signals. It receives commands from higher layers to fire baseband and modulated 
pulses, generate pump signals, and to perform a measurement of qubit responses.

If these commands are standardized, the control electronics can easily be replaced by similar electronics 
from other brands. This capability usually requires a simple translation of standardized commands into 
proprietary hardware commands for storing samples in the memory of an AWG (Arbitrary Waveform 
Generator) or firing a selected pulse.

Figure 1 illustrates that this translation can be accomplished through a thin software wrapper layered 
directly above the hardware, serving as an integral component of layer 3. It can be offered as firmware 
built into the electronics or as an external piece of (driver) software.

6.1.4 Layer 4 – Control Software

The control  software refers to the software systems and tools designed to manage,  coordinate and 
optimize operations dictated by higher level languages. It plays a crucial role in translating higher-level 
quantum assembly instructions into commands that can be handled by the control electronics. This layer 
may include an instruction set architecture (ISA), error correction and calibration functionalities (as 
shown in Figure 1). 

 ISA (Instruction set architecture) refers to a lower-level method of defining operations on a 
quantum  computer.  Instead  of  defining  specific  gates,  this  layer  defines  gates  (or  other 
instructions)  as  operations,  using  pulses  pulsed  for  a  certain  time,  on  specific  qubits.  An 
example of an instruction set architecture is pulse level programming where a user can specify 
wave  pulses  on  qubits  instead  of  gates.  This  requires  knowledge  of  the  system’s  control 
equipment as well as the topology and qubit nature.

 Error correction refers to all low-level techniques to enable error-robust physical operations. 
Error  correction  as  a  whole  is  a  functionality  distributed  over  various  (higher)  layers.  The 
control  software handles only low-level  techniques,  such as detection or simple corrections, 
partly autonomously and partly controlled from higher layers.

 Calibration refers to low-level methods to stabilize the hardware by continuous monitoring of 
hardware performance to maintain optimal operation.

6.1.4.1 Functionality of an ISA

The aim of an instruction set architecture (ISA) is to convert a sequence of machine-specific instructions 
from higher layers into commands for the control electronics to control individual qubits. As such, the 
ISA  has  full  awareness  of  the  underlying  quantum  hardware  and  its  topology.  Due  to  the  ISA’s 
knowledge of the quantum hardware, it also has the responsibility of handling the execution timings 
and scheduling of individual instructions, such that higher layers should only know their sequence.

On input, the ISA may receive instructions from higher layers, for instance, to change the quantum state 
of qubits (gate instructions), to read out qubits (measurement instructions) or any other instructions to 
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interact with all available qubits. These instructions can be provided to the ISA in a specific format, such 
as  binary  machine  instructions,  ASCII  human-readable  instructions,  or  function  calls.  Instructions 
intended for controlling one or two qubits may be fed one by one to the ISA, but it is more efficient if an 
ISA can handle many of them in parallel as a “vector” of instructions to interact with an ensemble of 
qubits simultaneously. 

Higher layers can either push these instructions into a buffer within the ISA whenever the ISA signals 
readiness,  or  the  ISA can  poll  instructions  from a  buffer  within  higher  layers  after  completing  the 
execution of a previous instruction group. This process also includes polling requests and instructions 
from multiple users. In all cases, it requires a well-defined interface (API) with the above layer(s), as 
well as a well-defined instruction set language (such as OpenPulse [7] or Pulser [8]).

An ISA may handle gate-level instructions as well as pulse-level instructions. Both may be mixed in a 
single compilation pass for bypassing specific gate instructions, which can be parsed in the Software 
Development Kit (SDK) by the user. Gate-level instructions are considered to be any set of operations 
that can be parsed onto universal gate-based quant`um computers regardless of the hardware, while 
pulse-level instructions are operations that are heavily dependent on the system’s physical architecture. 
The ISA will thus support instructions to specify the exact waveform of a pulse to be fired to a specific 
qubit, as well as an ensemble of pulses where each pulse has its own waveform and relative delay.

The common way of sending instructions to the ISA is via higher level layers such as the assembly or 
programming layer.  Alternatively,  a user may be allowed, via the communication init,  access to the 
control  software  layer  directly  or  via  the  hardware  abstraction  layer  by  supplying  ISA-readable 
instructions directly.

On output,  the ISA issues commands to the control hardware, such as triggering pulses to qubits or 
reading their responses through measurement. This requires the ISA to have full control over the timing 
of all these commands. If a pulse is to be applied to a qubit, the ISA may calculate its characteristics in 
real-time, such as waveform / pulse-shape and magnitude. Alternatively, it may also read predefined 
characteristics from a library created by other software units, stored either in the control software layer 
or in the control electronics layer. In all cases, it requires a well-defined interface (API) with the control 
electronics as well as a well-defined command set.

6.2Room Temperature Solid State 

The members of this architecture family have in common that solid-state qubits are all operating at 
room temperatures. Examples of members in this architecture family are:

 Artificial atoms in solids, such as NV centres;
 Optical quantum dots.

The description of this architecture family and associated low-level layers is to be developed in future.

6.3Trapped Ions 

The  members  of  this  architecture  family  can  operate  either  at  room temperature  or  at  cryogenic 
temperatures  (e.g.  4K).  Quantum  devices  are  controlled  by  electronics  operating  either  at  room 
temperature  or  under  cryogenic  conditions.  For  a  larger  number  of  qubits,  the  amount  of  routing 
signals  becomes  bulky,  and  efficient  thermal  management,  low-noise  electrical  and  magnetic 
components are required.
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Room temperature architectures that are identified are
 Optical qubits;
 Raman qubits;
 Spin (microwave) qubits;

Cryogenic (4K) architectures that are identified are
 Optical qubits;
 Raman qubits;
 Spin (microwave) qubits

The description of this architecture family and associated low-level layers is to be developed in future.

6.4Neutral Atoms 

Systems of individually-controlled neutral atoms, interacting with each other when excited to Rydberg 
states,  have  emerged  as  a  possible  platform  for  quantum  information  processing.  The  two  main 
examples are ensembles  of  individual  atoms trapped in optical  lattices  or  in arrays of  microscopic 
dipole traps separated by a few micrometres. In these platforms, the atoms are almost fully controllable 
by optical addressing techniques.

The description of this architecture family and associated low-level layers is to be developed in future.

6.5Photonic quantum computing

These architectures have in common that the quantum information during computing is encoded into 
photonic properties. We can divide different families of photonic quantum computers in two categories, 
universal  and  non-universal  quantum  computers.  Non-universal  quantum  computers  cannot 
manipulate  directly  qubits  and execute  quantum circuits  but  provides  more  specialized  computing 
primitives.

Non-universal photonic quantum computing families that are identified are:
    • Boson sampling;
    • Gaussian boson sampling.
Universal families that are identified are:
    • Knill-Laflamme-Milburn scheme using post-selection schema;
    • Measurement based quantum computing using cluster states.
The description of these architectures and associated low-level layers is to be developed in future.

6.6Other Architectures

When other architectures are identified in future, they will be added to this list.
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7 Hardware Abstraction Layer (HAL)

The aim of the Hardware Abstraction Layer for gate-based quantum computers is  to inform higher 
layers with capabilities and limitations supported by the underlying hardware. Layers above the HAL 
can use this information to hide many implementation-specific details to higher layers by offering a 
more unified interface.   Layers above may also use this information to provide higher-level commands to 
programmers or programs allowing for implementing hardware-specific optimizations and adaptations.

Not all quantum computers make use of the same paradigm. Annealing quantum computers behave 
differently from gate-based quantum computers, and therefore their HALs might be different as well. 
The HAL can therefore provide information about the underlying architecture,  such as for  instance 
being “gate-based”, “annealing” or “simulation”.

A gate-based quantum computer processes a sequence of instructions to change the state of a quantum 
register with many qubits before the resulting state is queried by measurements. A convenient graphic 
representation of such a sequence has the appearance of a circuit where the elements seem to operate 
on one or more qubits simultaneously. Due to this convenient graphic representation, these instructions 
are called gates.

Moreover, the HAL facilitates task scheduling by creating a queue for tasks submitted concurrently by 
multiple users. Furthermore, the scheduling can be optimized for time or resource efficiency.

Another functionality  is  that  the HAL can select  between multiple  quantum architectures  and even 
partition a single task into multiple queues to perform calculations in parallel on multiple architectures.

7.1 Organization of qubits

The HAL can report to higher layers how qubits are organised in one or more quantum registers. This is 
a system comprising multiple qubits, each with its own index. All qubits can be members of a single 
register, or be spread out over multiple (smaller) registers. The HAL supports instructions to operate 
on such registers for initializing, changing, and querying the state of the qubits. The HAL can report the 
properties of each register by means of the following parameters:

 Width: The HAL can specify the number of available qubits and how they are organized in these 
registers. It can also specify if all qubits are part of a single quantum register or if are they are 
allocated to multiple (smaller) registers. The use of multiple registers may occur when using 
modular hardware architectures.

 Depth: The HAL can specify the maximum depth for circuits of gates that can be executed before 
the  calculated  result  becomes  unreliable.  This  value  is  related  to  coherence  time  of  the 
implementation and other imperfections of underlying hardware.

 Connections: The  HAL  can  also  provide  an  adjacency  matrix for  each  quantum register,  to 
indicate which qubits are edge-connected. For instance, when a register has N qubits, then this 
adjacency matrix C has size NxN. The default of each element in this matrix is false, but if qx and 
qy are the indices of two adjacent qubits then C(qx,qy)=C(qy,qx)=true. Matrix C is therefore a 
symmetric matrix, since C(k,r)=C(r,k).

The HAL can provide additional information about the underlying architecture.

7.2 The concept of native gates

The HAL can specify a list of native gates supported by the underlying hardware. The name native gate 
refers to an operation for changing the quantum state of a register by means of a “single” physical action 
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on one or more qubits simultaneously. An example is a single pulse composition that cannot be broken 
down into two or more shorter pulse compositions. In other words, if a gate can be divided into two or 
more shorter independent sequential physical actions, it is not native. 

As a result, a native gate can be executed in the minimum amount of execution time. Knowledge about 
which gates are native is relevant information for compilers that try to optimize a circuit with respect to 
execution time.

Gates that can only be implemented by a sequence of two or more native gates are called compound 
gates.

The boxed example in figure 2 illustrates for a specific case that the single qubit gates X, Y, Rx(a), Ry(b) 
are  all  native  for  that  implementation,  while  the gates  Z  and Rz(c)  are compound gates.  A similar 
example can be elaborated with dual qubit gates. For a specific implementation, a gate like CNOT may 
turn out to be compound as well when it cannot be implemented with one native dual qubit gate.

Example

The concept of native gates can be explained by the following example. Assume that a specific 
hardware  implementation  supports  a  mechanism  to  rotate  a  qubit  via  a  "single"  pulse 
composition that  can be controlled with two real  parameters  "a"  and "b".  Assume that  the 
definition of this rotation function equals:

  RN(a,b) = [ cos(a/2),             -j*exp(-j*b)*sin(a/2)]

            [-j*exp(j*b)*sin(a/2),               cos(a/2)]

Then some of the well known gates can be implemented via:

   Rx(a) = [   cos(a/2), -j*sin(a/2)] = RN(a,0)

           [-j*sin(a/2),    cos(a/2)]

   Ry(b) = [   cos(b/2),   -sin(b/2)] = RN(a,pi/2)

           [   sin(b/2),    cos(b/2)]

   Rz(c) = [exp(-j*c/2),       0    ] = RN(pi,0) * RN(pi,-c/2)       * exp(j*pi)

           [          0,  exp(j*c/2)]

   X     = [ 0,  1] = Rx(pi) * exp(j*pi/2) = RN(pi,0)                * exp(j*pi/2)

           [ 1,  0]

   Y     = [ 0, -j] = Ry(pi) * exp(j*pi/2) = RN(pi,pi/2)             * exp(j*pi/2)

           [+j,  0]

   Z     = [ 1,  0] = Rz(pi) * exp(j*pi/2) = RN(pi,pi) * RN(pi,pi/2) * exp(-j*pi/2)

           [ 0, -1]

In this hardware implementation, Rx(a), Ry(b), X, Y can be considered as native gates. The gates 
Rz(c)  and Z  are  to  be  combined from two sequential  native  gates,  so  they  are  compound. 
Knowledge about which gates are native is relevant for quantum algorithms that try to find an 
optimal circuit representation in terms of execution time.

Figure 2 - Example of a specific hardware implementation
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7.3 Concept of primitive gates

A  compiler  or  interpreter  does  not  always  know  how  to  convert  well-known  gates  into  a  smart 
combination of native gates for any possible set of native gates. In those cases, a fall-back situation 
ought to be supported by the HAL in terms of predefined solutions for well-known gates like Rx(a), 
Ry(b), Rz(c), X, Y, Z, H, S, T, CNOT, etc. 

Therefore, the HAL can specify a list of "primitive gates" that it can emulate by a sequence of one or 
more native gates.

7.4 Concept of measurement

The HAL supports instructions to query the state of one or more qubits in a quantum register by means 
of a measurement. The answer will be returned as a binary string stored in a dedicated register. Note 
that the state will be collapsed after such a query. 

The HAL also supports instructions to read out the bits in this register and/or to use these bits for 
instructing controlled gates.

If  the  hardware  supports  it,  the  HAL  can  also  offer  instructions  to  specify  the  basis  for  these 
measurements.

7.5 Interfacing considerations

A preferred way of communicating with the HAL is by means of binary instructions, preferably common 
for all quantum computing implementations. Therefore, a list of binary commands is needed for letting 
the  HAL  report  capabilities  and  limitations  of  the  underlying  hardware,  and  for  executing  all 
aforementioned instructions.

Such  an  interface  may  also  offer  a  convenient  format  for  instructing  a  simulator  that  emulates  a 
quantum computer with a limited set of qubits.

8 Assembly layer 

This  layer  concerns  quantum assembly  languages,  such  as  OpenQASM [3],  that  describe  quantum 
computations according to one specific model (e.g., circuit model, measurement-based model, quantum 
annealing model), with a per-architecture instruction set. 

There will not be a single quantum assembly language and the syntax may also differ among various 
implementations. Languages for gate-based quantum computing have in common that they can describe 
universal circuits with single qubit gates, and entangled gates such as CNOT. Due to the huge diversity 
of quantum computing architectures, it is not likely that a unique, widely accepted, quantum assembly 
language would emerge and later become a standard.
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9 Programming layer 

The specification of quantum algorithms using register-level representation languages is not easy for 
programmers. Indeed, quantum assembly programs are usually generated by a software library, from a 
piece of code written in a common programming language, such as Python.

In general,  the  Programming Layer  includes  all  the languages,  libraries,  and software development 
facilities  for  coding  quantum  algorithms  or  high-level  applications  that  use  predefined  quantum 
algorithms as subroutines.

9.1Programming Languages and Libraries

In the quantum computing domain, Python is the most used high-level programming language. It is a 
general-purpose imperative language, as it allows developers to write code that specifies the steps the 
computer must take to accomplish the goal. Other imperative languages have been designed on purpose 
for quantum computing, such as Q# [4] and Silq [5]. 

Alternative to imperative programming is functional programming, where programs are constructed by 
applying  and  composing  functions.  In  the  quantum computing  domain,  there  are  a  few functional 
programming languages, one being Quipper [6].  

Writing a program in a high-level language implies using software development kits (SDKs) that include 
application  programming  interfaces  (APIs)  for  coding  quantum  algorithms  from  scratch,  but  also 
collections  of  ready-to-use  quantum algorithms.  The APIs  may be very different,  depending  on the 
quantum  computational  model  (quantum  circuit  model,  quantum  annealing,  measurement-based 
quantum computation, etc.) and specific application domain (quantum optimisation, quantum machine 
learning, etc.). For Python programmers, there are several advanced SDKs.

The  most  advanced  SDKs  support  device  architectures  from multiple  providers,  provided  that  the 
quantum computational  model  is  the  same.  Examples  are  Qiskit  [9]  and Cirq  [10],  concerning  the 
quantum circuit model.

9.2Quantum Compilation

Being high-level programs hardware-agnostic, quantum compilers are necessary to translate abstract 
quantum algorithms into the most efficient equivalents of themselves, considering the constraints and 
features exposed by the Register-level representation layer.

The input to the quantum compiler is a quantum circuit including single or multi-qubit gates. Usually, 
the input circuit is the simplest (and most elegant) representation of a quantum algorithm (e.g.,  the 
Quantum  Fourier  Transform).  Such  a  representation  does  not  consider  the  constraints  that  may 
characterise  the  target  quantum  computer,  such  as  the  available  gate  set  and  the  connectivity 
constraints between which qubits a two-qubit gate is natively allowed.

The quantum compiler leverages information provided by the Register-level  representation layer to 
translate the input circuit into an equivalent circuit that fits the target device. 

An example is provided in figure 3, in which a quantum circuit is compiled into another quantum circuit 
by considering the connectivity constraints of the target quantum computer. The circuit on the left does 
not fit the connectivity constraints of the target device, which are described by the graph in the middle 
of the figure. The circuit on the right is the compiled version of the circuit on the left, i.e., functionally 
equivalent but fitting the target device. To produce the output circuit, the compiler chose a different 
mapping for the input circuit’s qubits to the device qubits and inserted a SWAP gate before the last 
CNOT gate.
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The description format of the output circuit may be different from the description format of the input 
circuit. If the input and output circuits have the same description format, the compiler is often denoted 
as “transpiler”.

Figure 3 – Example of compiling a generic circuit into an executable circuit

10 Service Layer 

This  layer  contains  the  user-side  where  a  task,  or  subset  of  a  task,  exists  that  requires  execution. 
Quantum computers can help execute this task and the user can then start programming algorithms to 
obtain the sought-after answer. Depending on the service used, users may perform tasks locally on a 
quantum computer. An alternative is that tasks run mainly remotely on a classical computer and use 
quantum computing as a service (QCaaS) to run specific tasks on a dedicated quantum computer. 
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11 Communication Unit 

Currently, commercial quantum computers are built for cloud-based computing, or at least offer access 
to different end-users. This means that users wanting to execute algorithms on a gate-based quantum 
computer from outside the stack must place a request to get access to one or more (software) layers 
inside  the  stack.  For  this  purpose,  it  is  crucial  that  each  software  layer  can  be  reached  by  the 
communication unit. The communication unit can exchange messages with client applications that run 
outside the quantum stack, for instance on a nearby computer or on a remote server somewhere in the 
cloud. It can handle all messages that are needed for starting a quantum computing session, including:

 Handshaking - a protocol to start communicating between remote nodes

 Message handling - means to exchange information between two nodes

 Authentication – to verify if a user is allowed to get access,

 Access right management - to what layers does this user have access

 Resource allocation - reserve memory, time slots, priorities etc.

 Billing - counting how much resources have been used

A quantum computing session offers an application the experience as if it has its own resources and as 
if it is fully protected from other applications.

Once  a  session  is  initiated,  the  communication  unit  can  start  handling  incoming  messages  for 
instructing the upper layers in the stack.  For instance,  to load and run a quantum assembly task. 
Results can be passed back to the communication unit, which in turn can send messages with those 
results to the client application outside the quantum stack.

The communication unit can also communicate directly with the lower layers of the quantum stack, 
provided that the client application is allowed to according to allocated usage rights. For instance, to 
send low-level  commands  directly  to  the  control  electronics  for  firing  a  specific  pulse  to  a  qubit. 
Detected results from the control electronics can also be passed back to the communication layer, 
which in turn can send messages with those results to the client application outside the quantum 
stack.

11.1 Example Information Flow

11.1.1 Single user accessing the full quantum stack

Assume a session has been initiated by an external user or client application. The communication unit 
will then start handling incoming messages and communicates them, for instance, with the service layer 
to load and run a task.  The associated program will  be compiled or interpreted into a sequence of 
instructions that are then sent to the HAL. Most of these instructions are passed over with minimal 
conversion effort  to the ISA within the control  software layer.  The ISA generates  in turn low-level 
commands to the control electronics to let it generate a variety of (analogue) signals, such as baseband 
or modulated pulses. These signals are transported through the control highway to reach the qubits.
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Once an instruction is executed for measuring a qubit response, the measured result is reported back to 
the calling program in higher layers.  The results  from this  program are communicated back to the 
communication unit, which in turn sends them as messages to the external user or client application.

11.1.2 Multiple users accessing the full quantum stack

Assume multiple users with similar privileges have initialized their sessions simultaneously and each of 
them has access to the stack. The communication unit is responsible for processing incoming messages, 
verifying  access  permissions,  checking  user  privileges,  allocating  resources  for  each  session  and 
keeping  all  sessions  separated  from  each  other.  The  users  submit  their  respective  tasks  and  the 
communication unit  may ask a compiler to compile each task to store the results into an allocated 
thread within the HAL. The HAL offers scheduling and priority of each thread based on user specific 
information flagged by the communication unit.  The scheduled instructions in the output queue are 
sequentially fed to the control software layer for further processing as previously described.

Once the circuit  is  executed,  the measured result  is  communicated back to the HAL,  which in turn 
communicates this to the calling program.

11.1.3 User accessing lower layer

Assume a super-user with adequate access rights wants to upgrade low-level software and submit it 
directly to a lower layer. For instance an upgrade of the ISA functionality within the control software 
layer. The super-user sends this upgraded software to the communication unit, including information 
about the target layer.  The communication unit sends “wait” requests to all  layers,  pauses until full 
confirmation, upgrades the low-level software, sends “success” or “failure” messages back to the super-
user, and reports “done” to all layers. After that, the full stack can proceed as usual.
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