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8.2 Functional requirements

8.2.1 Instruction Set Architecture

The ISA is a functionality within the control software layer that can process instructions from 
higher layers, such as the HAL, and convert them into commands for control electronics to generate
all kinds of pulses and measurements for qubits. It can process received instructions to initialize the 
setup, to inquire supported capabilities, to execute gates or measurements and to read-out 
intermediate results. 
However, there are several limitations that should be accounted for:

 Lane limitations:   Execution often means the firing of pulses by the control electronics to the
qubits, preferably multiple pulses simultaneously to different qubits. However the available 
hardware limits the number of pulses that can be fired simultaneously. When more qubits are
to be controlled than this limit, a switching matrix is to be used after the pulse generators to 
reach all qubits of interest. These switches can offer so called “lanes” to connect a qubit to a 
particular pulse generator. To save hardware such a switching matrix may support only a 
restricted combination of lanes, and higher layers such as the HAL should be aware of such 
limitations. A convenient way to specify the supported connections between pulse generators
and qubits through a switching matrix is by means of a so called “lane matrix”.

 Adjacency limitations  : Similar limitations do occur between qubits. Direct application of 
entangling operations between qubits can only be achieved between qubits that are adjacent 
to each other. It requires multiple steps to perform entangling operations between non-
adjacent qubits, and therefore higher layers, such as the HAL, should be aware of such 
limitations. A convenient way to specify which qubits are edge-connected is by means of a 
so called “adjacency matrix”.

To offer all required functionalities, the ISA should support the following groups of instructions:

8.2.1.1. Initialization instructions

Initialization instructions are to prepare the setup for quantum computing tasks. These instructions 
are typically sent at the beginning of a calculation sequence by higher layers, such as the HAL. But 
they may also be re-sent as often as needed. At least the following instructions should be supported 
by the ISA: 

 “set shapes”: construct a data structure with predefined wave shapes for pulses.
 “set bases”: construct a data structure with predefined bases to measure individual qubits.
 “set mapping”: construct qubit topological mapping.
 “set registers”: group the qubits into registers, and allocate indices to individual qubits. This 

grouping can be defined from higher layers, such as the HAL, or selected from one or more 
predefined register grouping.

 “set lanes”: allocate numbering to lanes of pulsing channels.
 “run calibration”: call a calibration from a set of predefined calibration procedures, to prepare

a setup.

It might be possible that future systems will allow for a user-definable grouping of qubits to 
arbitrary registers. In that case the definitions of lane indices and mapping will also change. 



8.2.1.2. Inquiring capability instructions

Inquiring capabilities is a mechanism for higher layers, such as a HAL, to identify relevant 
information about the setup, without performing any calculation. Most of these capabilities can be 
hard-coded in the software by the vendor, who has full knowledge about the hardware. But some of 
the capabilities can be a result stored in memory after performing initialization instructions. 

As a remark, some systems can modify their registers during runtime. When the system has this 
capability, it should support instructions on how they can modify the register. 

8.2.1.2.1 Inquiring the organization of qubits

Qubits can be grouped into “quantum registers” if they can be entangled, each with a unique index 
number to address the individual qubits. A system can support one or more of those registers, and if 
multiple registers are being used, each of them has a unique identifier to address the individual 
registers.

A quantum compiler or interpreter should have full knowledge of how the qubits are organized in 
order to optimize generated code. To prevent that each compiler is targeted only to a single system, 
it could start with inquiring these capabilities via the HAL, which in turn inquires the control 
software layer. The ISA should support at least the following capability instructions:  

 “Get register set”: Return a list with identifiers of each of the supported quantum registers.

 “Get register width”: Return the number of available qubits for each individual quantum 
register.

 “Get adjacency matrix”: Returns an "adjacency matrix" for each individual quantum 
register, to specify which qubits in the register are edge-connected. For instance, when a 
register has Nq qubits, then this adjacency matrix C has size Nq×Nq. The default of each 
element in this matrix is false, but if qx and qy are the indices of two adjacent qubits then 
C(qx,qy)=C(qy,qx)=true. Matrix C is therefore a symmetric matrix, since C(k,r)=C(r,k). 

 “Get lane matrix”: Returns a "lane matrix" for each individual quantum register, to specify 
for each pulse generator to which qubit it can be connected. For instance, when Np pulse 
generators can be connected to Nq qubits in that register, then the associated lane matrix L 
has size Np×Nq. The default of each element in this matrix is false, but if pulse generator px 
can be connected with qubit qy then L(px,qy)=true. 
Returning an empty matrix means that this limitation does not exist.

Different kind of qubits can be distinguished when inquiring system specifications, such as:

 Physical qubit: A noisy quantum system in which a two-dimensional Hilbert space can be 
encoded. 
 Data qubit: data qubits are physical qubits used for storing and processing quantum 

information.   
 Measurement qubits: physical qubits used for stabilizer measurements of quantum 

error-correcting codes.
 Communication qubit: physical qubits specifically designed to perform entanglements

to other communication qubits on non-local registers. They are also entangled to other



qubit types within the quantum computers and are primarily used to mitigate information
for distributed quantum operations.  

 Logical qubit: An error-corrected quantum system whose state lies in a two-dimensional 
Hilbert space.  

  

8.2.1.2.2 Inquiring supported gates

A native gate is a gate that can be executed within a “single pulse interval” using one or several 
simultaneous pulses. If a gate requires multiple pulses in sequence, then it is called a compound 
gate. If a compiler has full knowledge about which gates are native and which are compound, then 
it can optimize a compiled program in terms of minimal execution time.

The ISA may also support shortcuts for commonly used (sequences) of native gates as if they where
single gate. Those shortcuts are called primitive gates. An example may be the well-known Pauli 
gates that are implemented as (a sequence) of rotations.  All primitive gates that are not native are 
assumed to be compound gates.

The ISA should support at least the following gate inquiry instructions:

 “Get primitive gates”: Return an identifier list of all gates that are understood by the ISA. 
This includes both single qubit as well as multi qubit gates. Examples are:
- Rx(a), Ry(b), Rz(c), X, Y, Z, etc
- CX, CZ, SWAP, CNOT, sqrtSWAP, etc

 “Get native gates”: Return an identifier list of a subset of primitive gates that can be 
executed within a single pulse interval.

 “Get gate matrix”: Returns for each primitive gate the associated matrix defining the 
operation. 

 “Get gate duration”: Returns for each primitive gate the operation time. 

 “Get lane size”: Return the number of pulses that can be fired simultaneously to a selected 
set of qubits. TODO. This instruction may be superfluous. A compiler should prevent such 
an overload by inquiring “get lane matrix”. If that overload occurs, a fault should be raised 
by the ISA.

TODO: Elaborate on the need for possible instructions, that informs higher layers if a qubit is 
physical or not. If yes, it may be relevant for higher layers to know if it is a data, measurement, or 
communication qubit. Such an instruction might be identified as “Get qubit properties”.

8.2.1.2.3 Inquiring qubit or register performance

Inquiring performance information is a mechanism to enable higher layers, such as the HAL, to 
extract information about the maximum circuit depth and other quality parameters. This means the 
number of time slices that can be executed before the calculation becomes unreliable. Examples are 
specifying the error of primitive gates, expressing a fidelity for each gate, or simply specifying a 



maximum circuit depth. This value is related to coherence time of the implementation and other 
performance parameters of each connection between qubits. Details about these mechanisms are 
still to be elaborated, but they should facilitate higher layers, such as the HAL, to identify one or 
more of the following performance parameters:

 “Get gate performance” such as:

 Coherence times, e.g (T1, T2), where “T1” refers to state decoherence time and “T2” 
refers to phase decoherence time. 

 Fidelity for certain gates.

 Qubit pulse error rates.

 Read out error to indicate how accurate a measurement can be 

 “Get instruction duration”: List of durations for each identified instruction (operations, 
pulses, read out times, etc.). Note that this is a generalization of the afore mentioned “get 
gate duration” instruction

 “Get qubit properties”: List of properties of each identified qubit e.g (T1, T2, qubit type, 
position coordinates, etc.)

8.2.1.3 Execution instructions
Execution instructions are instructions that are meant to change the state of qubits for calculation or 
measurement purposes, or to prepare for such an instruction. 

preparation/initialization level:

 “Reset calculation”: call a procedure for re-calibration the setup from a set of pre-defined 
calibration procedures. One should only adjust for small changes in the setup due to drift or 
other imperfections of the setup, which can be done in a reasonably short period of time. As 
such it does not refer to a full calibration as described in “initialization instructions”.

 “Reset qubits”: Change the states of all qubits of a selected register into predefined ones, 
which can be identified as their “|0>” state.

 “Reset flags”: Set all binary flags to “false” of a selected conditional register.

 “Set flag X”: Set an individual binary flag “X” of a selected conditional register to a selected
value.

pulse level:

Control electronics can fire multiple pulses in parallel, and before they are actually fired by the 
electronics the ISA must support instructions to prepare this for each qubit individually. However 
the available hardware limits the number of pulses that can be fires simultaneously. When more 
qubits are to be controlled than this limit, a switching matrix is to be used to reach all qubits of 
interest. They can offer so called “lanes” to connect a qubit to a particular pulse generator. To save 
hardware such a switching matrix may support only a restricted set of lanes, and higher layers such 
as the HAL should be aware of such limitations.



 “select qubits”: Prepare for the connection of a selected set of qubits with available lanes, 
through which pulses will be transported thereafter The actual connection may be delayed 
until a “wait” or “fire” instruction is handled.

 “select pulses”: Prepare for each lane of interest a predefined pulse that is to be transported 
thereafter. The actual firing of pulses may be delayed until a “fire” instruction is handled.

 “fire pulses”: Fire an ensemble of the selected pulses through the selected lanes for a 
specified duration, when the selection of lanes and pulses is completed. This instruction will 
actually execute a specific native gate by changing its state into a specific phase.  During 
this duration, the ISA can prepare for other lanes and pulses, to be used for firing a next 
ensemble of pules.

 “wait”: impose a selected amount of delay before a next ensemble of pulses can be fired. 
During this duration, the ISA can prepare for other lanes and pulses, to be used for firing a 
next ensemble of pules.

gate level:

An ISA has full knowledge on what (sequence of) lanes and pulses are needed to execute primitive 
gates. This frees higher layers of the burden to know the exact implementation of lanes and required
pulses. As such, gate execution instructions can be regarded as higher in abstraction than pulse 
execution instructions.

 “select gates”: Prepare for an ensemble of gates to be executed simultaneously on selected 
qubits. The actual connection may be delayed until a “wait” or “fire” instruction is handled. 
This includes the selection of potential conditional gates.

 “fire gates”: Fire a sequence of simultaneous pulse-delay combinations to the selected qubits
in order to execute the selected native gates.

measurement level:

 “select bases”: prepare for an ensemble of selected qubits the pulse from the “basis library”, 
that are needed to measure the state of these qubits in a specific basis. 

 “fire measurements”: Fire a sequence of simultaneous pulse-delay combinations to measure 
the selected qubits in a specific basis, detects their response and store the results in the 
associated conditional bits.

8.2.1.4 Fault handling instructions

These instructions are about classical means to handle all kinds of “classical errors”. But to avoid 
confusion with “quantum errors” the word “fault” is consistently used here to denote those 
“classical errors”.



Each time a fault is raised, the setup should increment the associated fault counter. This enables 
higher layers, such as the HAL, to read-out these fault counters and to perform proper fault 
handling.
Each time a fault occurs, the ISA can raise an interrupt to higher layers to inform that a fault has 
occurred. These interrupts can be masked individually to prevent then being raised.

Examples of such fault counters are:

 Raise exceeding pulse duration time.

 Raise parameter overflow/underflow faults (when phase is out of bounds, index of libraries, 
lanes or qubits are wrong, etc.).

 Raise pulse timing faults (in the event that pulses are too close together, pulsed at too short 
times, etc.).

 Raise runtime faults (in the event that a channel is used to pulse a qubit that is not contained 
in channel lane, etc.).

 Raise memory faults (instruction is too long).

 Raise connection faults (if during an active hybrid session server disconnects).

 Raise adjacency faults, if direct entanglement is requested between two non-adjacent qubits.

 Raise lane faults, if a pulse has to be send to a qubit while the associated lane cannot be 
build-up.

The ISA should therefore support readout and (re)setting instructions of these fault counters and 
flags, including:

 “Set fault mask all”: force for all faults that the ISA will raise an interrupt to higher layers 
when a fault occurs.

 “Set fault mask X”: force for fault “X” that the ISA will raise an interrupt to higher layers 
when such a fault “X” occurs. 

 “Get fault last”: returns the identifier (or index) of the last fault being encountered.

 “Get fault all”: returns an array with the content of all fault counters and flags.

 “Get fault X”: returns the content of fault counter or flag “X”.

 “Reset fault all”: Resets all fault counters and flags to zero of false.

 “Reset fault masks”: Resets all masks to false, so that no fault will raise an interrupt to 
higher layers.

 “Reset fault X”: Resets fault counter or flag “X” to zero of false.

8.2.1.5 Quantum error correction instructions

These instructions are about informing higher layers such that they can perform a high level of 
quantum error correction (QEC) or to correct low level quantum errors directly. 



TODO: Elaborate on what QEC instructions are needed to let higher layers handle proper quantum 
error correction. The following considerations are input for that elaboration: 

Quantum Error Correction (QEC) unit:
 The QEC unit can be dedicated hardware (FPGA, CPU, GPU, …) connected to the ISA
 The QEC unit can request from the ISA to do measurements and perform gates. E.g., a 

stabilizer measurement may involve performing two-qubit gates between data qubits and 
measurement qubits, performing single-qubit gates on the measurement qubits, and 
performing a measurement of the measurement qubits.

 The measurements results yield the error syndromes, which are passed to the decoder 
software running on the QEC unit.

 The QEC unit can perform decoding based on error syndromes, wherein the output of 
decoding is a set of the most likely errors of the quantum state.

 Based on the set of the most likely errors, the QEC unit identifies correction operations (e.g.,
Pauli flips).

 The QEC unit can transfer correction operation instructions to the ISA for performing 
correction operations, potentially via a Pauli frame unit.

ISA requirements related to QEC:
 ISA must talk to QEC unit (potentially via a Pauli frame unit)
 ISA may take instructions for combined (non-native) gates which are frequently used for 

QEC operations, e.g., stabilizer measurements.


